3. Chandran H.T., Ng T.-W., Foo Y., Li H.-W., Qing J., Liu X.-K., Chan C.-Y., Wong F.-L., Zapien J.A., Tsang S.-W., Lo M.-F., Lee C.-S. Adv. Mater. 2017, 29, 1606909.
https://doi.org/10.1002/adma.201606909
7. Dearden C.A., Walker M., Beaumont N., Hancox I., Unsworth N.K., Sullivan P., McConville C.F., Jones T.S. Phys. Chem. Chem. Phys. 2014, 16, 18926−18932.
https://doi.org/10.1039/C4CP02733G
8. (a) Beaumont N., Cho S.W., Sullivan P., Newby D., Smith K.E., Jones T.S. Adv. Funct. Mater. 2012, 22, 561–566;
https://doi.org/10.1002/adfm.201101782
(b) Beaumont N., Castrucci J.S., Sullivan P., Morse G.E., Paton A.S., Lu Z.-H., Bender T.P., Jones T.S. J. Phys. Chem. C 2014, 118, 14813−14823.
https://doi.org/10.1021/jp503578g
11. (a) Miyoshi Y., Kubo M., Fujinawa T., Suzuki Y., Yoshikawa H., Awaga K. Angew. Chem. Int. Ed. 2007, 46, 5532–5536;
https://doi.org/10.1002/anie.200700702
(b) Miyoshi Y., Fujimoto T., Yoshikawa H., Matsushita M.M., Awaga K., Yamada T., Ito H. Org. Electron. 2011, 12, 239–243.
https://doi.org/10.1016/j.orgel.2010.11.005