1. (a) Jiang H.W., Kim T., Tanaka T., Kim D., Osuka A. Chem. Euro. J. 2016, 22(1), 83–87.
https://doi.org/10.1002/chem.201504039
(b) Yoon M.C., Noh S.B., Tsuda A., Nakamura Y., Osuka A., Kim D. J. Am. Chem. Soc. 2007, 129(33), 10080–10081.
https://doi.org/10.1021/ja0735655
(c) Drobizhev M., Stepanenko Y., Dzenis Y., Karotki A., Rebane A., Taylor P.N., Anderson H.L. J. Am. Chem. Soc. 2004, 126(47), 15352–15353.
https://doi.org/10.1021/ja0445847
(d) Kim K.S., Lim J.M., Osuka A., Kim D. J. Photochem. Photobiol. C 2008, 9(1), 13–28.
https://doi.org/10.1016/j.jphotochemrev.2008.01.001
(e) Souza F., Subbaiyan N.K., Xie Y., Hill J.P., Ariga K., Ohkubo K., Fukuzumi S. J. Am. Chem. Soc. 2009, 131(44), 16138–16146.
https://doi.org/10.1021/ja9048306
(f) Xie Y.S., Hill J.P., Schumacher A.L., Sandanayaka A.D., Araki Y., Karr P.A., Labuta J., Souza F., Ito O., Anson C.E., Powell A.K., Ariga K. J. Phys. Chem. C 2008, 112(28), 10559–10572.
https://doi.org/10.1021/jp8028209
2. (a) Tanaka T., Osuka A. Chem. Rev. 2017, 117(4), 2584–2640.
https://doi.org/10.1021/acs.chemrev.6b00371
(b) Crossley M.J., Burn P.L. J. Chem. Soc., Chem. Commun. 1987, 39–40.
https://doi.org/10.1039/c39870000039
(c)Tsuda A., Osuka A. Science 2001, 291(5), 79–83.
https://doi.org/10.1126/science.1059552
(d) Ooi S., Tanaka T., Osuka A. Inorg. Chem. 2016, 55(17), 8920–8927.
https://doi.org/10.1021/acs.inorgchem.6b01422
3. (a) Lin V.S., DiMagno S.G., Therien M.J. Science 1994, 264(5162), 1105–1111.
https://doi.org/10.1126/science.8178169
(b) Arnold D.P., Nitschinsk L.J. Tetrahedron 1992, 48(40), 8781–8792.
https://doi.org/10.1016/S0040-4020(01)89451-5
(c) Anderson H.L. Inorg. Chem. 1994, 33(5), 972–981.
https://doi.org/10.1021/ic00083a022
(d) Anderson H.L. Chem. Commun. 1999, 2323–2331.
https://doi.org/10.1039/a904209a
4. Pawlicki M., Morisue M., Davis N., McLean D., Haley J.E., Beuerman E., Drobijev E., Rebane A., Thompson A.L., Pascu S.I., Accorsi G., Armaroli N. Anderson H.L. Chem. Sci. 2012, 3, 1541–1547.
https://doi.org/10.1039/c2sc00023g
5. (a) Naruta Y., Sasayama M., Sasaki T. Angew. Chem. Int. Ed. 1994, 33(18), 1839–1841.
https://doi.org/10.1002/anie.199418391
(b) Shimazaki Y., Nagano T., Takesue H., Ye B., Tani F., Naruta Y. Angew. Chem. Int. Ed. 2004, 43(1), 98–100.
https://doi.org/10.1002/anie.200352564
(c) Groves J.T., Lee J., Marla S.S. J. Am. Chem. Soc. 1997, 119(27), 6269–6273.
https://doi.org/10.1021/ja962605u
7. (a) de Jong J.J.D., Lucas L.N., Kellogg R.M., van Esch J.H., Feringa B.L. Science 2004, 304(5668), 278–281.
https://doi.org/10.1126/science.1095353
(b) Inouye M., Waki M., Abe H. J. Am. Chem. Soc. 2004, 126(7), 2022–2027.
https://doi.org/10.1021/ja039371g
(c) Fasel R., Parschau M., Ernst K.H. Angew. Chem. Int. Ed. 2003, 42(42), 5178–5181.
https://doi.org/10.1002/anie.200352232
(d) Borovkov V.V., Fujii I., Muranaka A., Hembury G.A., Tanaka T., Ceulemans A., Kobayashi N., Inoue Y. Angew. Chem. Int. Ed. 2004, 43(41), 5481–5485.
https://doi.org/10.1002/anie.200460965
8. (a) Xu L., Huang T.T., Liang X., Mack M., Harris J., Nyokong T., Li M.Z., Zhu W.H. J. Porphyrins Phthalocyanines 2016, 20, 647–655.
https://doi.org/10.1142/S1088424616500231
(b) Borovkov V.V., Hembury G.A., Inoue Y. Acc. Chem. Res. 2004, 37(7), 449–459.
https://doi.org/10.1021/ar0302437
(c) Guo Y.M., Oike H., Aida T. J. Am. Chem. Soc. 2004, 126(3), 716–717.
https://doi.org/10.1021/ja039369p
(d) Balaban T.S., Bhise A.D., Fischer M., Linke-Schaetzel M., Roussel C., Vanthuyne N. Angew. Chem. Int. Ed. 2003, 42(19), 2140–2144.
https://doi.org/10.1002/anie.200250465
9. (a) Liang X., Xu L., Li M.Z., Mack J., Stonec J., Nyokong T., Jiang Y., Kobayashi N., Zhu W.H. J. Porphyrins Phthalocyanines 2015, 19, 819–829.
https://doi.org/10.1142/S1088424615500492
(b) Li M.Z., Zhang Q., Xu L., Zhu W.H., Mack J., May A.K., Nyokong T., Kobayashi N., Liang X. ChemPlusChem 2017, 82(4), 598–606.
https://doi.org/10.1002/cplu.201600475
10. Gouterman M. In The Porphyrins Vol. III, Part A (D. Dolphin, Ed.) New York: Academic Press, 1978. p. 1–165.
12. (a) Mack J., Stillman M.J., Kobayashi N. Coord. Chem. Rev. 2007, 251, 429–453.
https://doi.org/10.1016/j.ccr.2006.05.011
(b) Kobayashi N., Muranaka A., Mack J. Circular Dichroism and Magnetic Circular Dichroism Spectroscopy for Organic Chemists. Cambridge: Royal Society of Chemistry, 2011.
http://dx.doi.org/10.1039/9781849732932
(c) Piepho S.B., Schatz P.N. Group Theory in Spectroscopy with Applications to Magnetic Circular Dichroism. New York: John Wiley and Sons, 1983.
(d) Stephens P.J. Adv. Chem. Phys. 1976, 35, 197.
https://doi.org/10.1002/9780470142547.ch4
13. (a) Veyrat M., Ramasseul R., Turowska-Tyrk I., Scheidt W.R., Autret M., Kadish K.M., Marchon J. Inorg. Chem. 1999, 38(8), 1772–1779.
https://doi.org/10.1021/ic981233i
(b) Kadish K.M., Davis D.G. Ann. N.Y. Acad. Sci. 1973, 206, 495–503.