7. Şenocak A., Demirbaş E., Durmuş M. Phthalocyanine-Nanocarbon Materials and Their Composites: Preparation, Properties, and Applications. In: Nanocarbon and Its Composites (Khan A., Jawaid M., Asiri I.A., Eds.) Elsevier, 2019. p. 677-709.
https://doi.org/10.1016/B978-0-08-102509-3.00023-7
10. Kim, Li H. Fabrication and Applications of Carbon Nanotube-Based Hybrid Nanomaterials by Means of Non-Covalently Functionalized Carbon Nanotubes. In: Carbon Nanotubes - From Research to Applications (Bianco S., Ed.) InTech, 2011.
https://doi.org/10.5772/18002
15. Blaudeck T., Preu A., Scharf S., Notz S., Kossmann A., Hartmann S., Kasper L., Mendes R.G., Gemming T., Hermann S., Lang H., Schulz S.E. Phys. Status Solidi 2019, 216, 1900030.
https://doi.org/10.1002/pssa.201900030
16. Scherr J., Neuhaus A., Parey K., Klusch N., Murphy B.J., Zickermann V., Kühlbrandt W., Terfort A., Rhinow D. ACS Nano 2019, 13, 7185-7190.
https://doi.org/10.1021/acsnano.9b02651
22. Ndiaye A., Bonnet P., Pauly A., Dubois M., Brunet J., Varenne C., Guerin K., Lauron B. J. Phys. Chem. C 2013, 117, 20217-20228.
https://doi.org/10.1021/jp402787f
24. Bartelmess J., Ballesteros B., de la Torre G., Kiessling D., Campidelli S., Prato M., Torres T., Guldi D.M. J. Am. Chem. Soc. 2010, 132, 16202-16211.
https://doi.org/10.1021/ja107131r
25. Chitta R., Sandanayaka A.S.D., Schumacher A.L., D'Souza L., Araki Y., Ito O., D'Souza F. J. Phys. Chem. C 2007, 111, 6947-6955.
https://doi.org/10.1021/jp0704416
30. Guldi D.M., Rahman G.M.A., Jux N., Balbinot D., Hartnagel U., Tagmatarchis N., Prato M. J. Am. Chem. Soc. 2005, 127, 9830-9838.
https://doi.org/10.1021/ja050930o
36. Chen C., Li X., Wen Y., Liu J., Li X., Zeng H., Xue Z., Zhou X., Xie X. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105517.
https://doi.org/10.1016/j.compositesa.2019.105517
38. Zheng J., Zong Y., Zhao G., Yu Z., Wang M., Zhu C., Li C., Liu J., Gui D. Int. J. Adhes. Adhes. 2020, 98, 102457.
https://doi.org/10.1016/j.ijadhadh.2019.102457
43. Aragão J.S., Ribeiro F.W.P., Portela R.R., Santos V.N., Sousa C.P., Becker H., Correia A.N., de Lima-Neto P. Sens. Actuators, B Chem. 2017, 239, 933-942.
https://doi.org/10.1016/j.snb.2016.08.097
54. Jeon I.-Y., Wook D., Ashok N., Baek J.-B. Functionalization of Carbon Nanotubes. In: Carbon Nanotubes - Polymer Nanocomposites (Yellampalli S., Ed.) InTech, 2011.
https://doi.org/10.5772/18396
56. Hauke F., Hirsch A. Covalent Functionalization of Carbon Nanotubes. In: Carbon Nanotubes and Related Structures (Guldi D.M., Martín N., Ed.) Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. p. 135-198.
https://doi.org/10.1002/9783527629930.ch6
57. Basha J. Applications of Functionalized Carbon-Based Nanomaterials. In: Chemical Functionalization of Carbon Nanomaterials (Thakur V.K., Thakur M.K., Eds.) Boca Raton: CRC Press, 2015. p. 572-587.
https://doi.org/10.1201/b18724-26
58. Setaro A., Adeli M., Glaeske M., Przyrembel D., Bisswanger T., Gordeev G., Maschietto F., Faghani A., Paulus B., Weinelt M., Arenal R., Haag R., Reich S. Nat. Commun. 2017, 8, 14281.
https://doi.org/10.1038/ncomms14281
60. Boul P., Liu J., Mickelson E., Huffman C., Ericson L., Chiang I., Smith K., Colbert D., Hauge R., Margrave J., Smalley R. Chem. Phys. Lett. 1999, 310, 367-372.
https://doi.org/10.1016/S0009-2614(99)00713-7
62. Holzinger M., Abraham J., Whelan P., Graupner R., Ley L., Hennrich F., Kappes M., Hirsch A. J. Am. Chem. Soc. 2003, 125, 8566-8580.
https://doi.org/10.1021/ja029931w
67. Leonard A.D., Hudson J.L., Fan H., Booker R., Simpson L.J., O'Neill K.J., Parilla P.A., Heben M.J., Pasquali M., Kittrell C., Tour J.M. J. Am. Chem. Soc. 2009, 131, 723-728.
https://doi.org/10.1021/ja806633p
72. De Marco M., Markoulidis F., Menzel R., Bawaked S.M., Mokhtar M., Al-Thabaiti S.A., Basahel S.N., Shaffer M.S.P. J. Mater. Chem. A 2016, 4, 5385-5389.
https://doi.org/10.1039/C5TA10311H
73. Schirowski M., Abellán G., Nuin E., Pampel J., Dolle C., Wedler V., Fellinger T.-P., Spiecker E., Hauke F., Hirsch A. J. Am. Chem. Soc. 2018, 140, 3352-3360.
https://doi.org/10.1021/jacs.7b12910
74. Şenocak A., Göl C., Basova T.V., Demirbaş E., Durmuş M., Al-Sagur H., Kadem B., Hassan A. Sens. Actuators, B Chem. 2018, 256, 853-860.
https://doi.org/10.1016/j.snb.2017.10.012
85. Gülmez A.D., Polyakov M.S., Volchek V.V., Kostakoğlu S.T., Esenpinar A.A., Basova T.V., Durmuş M., Gürek A.G., Ahsen V., Banimuslem H.A., Hassan A.K. Sens. Actuators, B Chem. 2017, 241, 364-375.
https://doi.org/10.1016/j.snb.2016.10.073
86. Singh A., Samanta S., Kumar A., Debnath A.K., Prasad R., Veerender P., Balouria V., Aswal D.K., Gupta S.K. Org. Electron. 2012, 13, 2600-2604.
https://doi.org/10.1016/j.orgel.2012.07.022
87. Parra V., Rei Vilar M., Battaglini N., Ferraria A.M., Botelho do Rego A.M., Boufi S., Rodríguez-Méndez M.L., Fonavs E., Muzikante I., Bouvet M. Langmuir 2007, 23, 3712-3722.
https://doi.org/10.1021/la063114i
90. Jha P., Sharma M., Chouksey A., Chaturvedi P., Kumar D., Upadhyaya G., Rawat J.S.B., Chaudhury P. Synth. React. Inorg., Met. Nano-Metal Chem. 2014, 44, 1551-1557.
https://doi.org/10.1080/15533174.2013.818021
92. Wang Y., Hu N., Zhou Z., Xu D., Wang Z., Yang Z., Wei H., Kong E.S.-W., Zhang Y. J. Mater. Chem. 2011, 21, 3779-3787.
https://doi.org/10.1039/c0jm03567j
100. Banimuslem H., Hassan A., Basova T., Gülmez A.D., Tuncel S., Durmuş M., Gürek A.G., Ahsen V. Sens. Actuators, B Chem. 2014, 190, 990-998.
https://doi.org/10.1016/j.snb.2013.09.059
101. Kaya E.N., Tuncel S., Basova T.V., Banimuslem H., Hassan A., Gürek A.G., Ahsen V., Durmuş M. Sens. Actuators, B Chem. 2014, 199, 277-283.
https://doi.org/10.1016/j.snb.2014.03.101
103. Banimuslem H., Hassan A., Basova T., Esenpinar A.A., Tuncel S., Durmuş M., Gürek A.G., Ahsen V. Sens. Actuators, B Chem. 2015, 207, 224-234.
https://doi.org/10.1016/j.snb.2014.10.046
104. Kadem B., Göksel M., Şenocak A., Demirbaş E., Atilla D., Durmuş M., Basova T., Shanmugasundaram K., Hassan A. Polyhedron 2016, 110, 37-45.
https://doi.org/10.1016/j.poly.2016.01.053
122. Rebis T., Lijewski S., Nowicka J., Popenda L., Sobotta L., Jurga S., Mielcarek J., Milczarek G., Goslinski T. Electrochim. Acta 2015, 168, 216-224.
https://doi.org/10.1016/j.electacta.2015.03.191
123. Patrascu D., David I., David V., Mihailciuc C., Stamatin I., Ciurea J., Nagy L., Nagy G., Ciucu A.A. Sens. Actuators, B Chem. 2011, 156, 731-736.
https://doi.org/10.1016/j.snb.2011.02.027
128. Devasenathipathy R., Palanisamy S., Chen S.-M., Karuppiah C., Mani V., Ramaraj S.K., Ajmal Ali M., Al-Hemaid F.M.A. Electroanalysis 2015, 27, 1403-1410.
https://doi.org/10.1002/elan.201400659
129. Devasenathipathy R., Karuppiah C., Chen S.-M., Palanisamy S., Lou B.-S., Ali M.A., Al-Hemaid F.M.A. RSC Adv. 2015, 5, 26762-26768.
https://doi.org/10.1039/C4RA17161F
132. Li P., Ding Y., Wang A., Zhou L., Wei S., Zhou Y., Tang Y., Chen Y., Cai C., Lu T. ACS Appl. Mater. Interfaces 2013, 5, 2255-2260.
https://doi.org/10.1021/am400152k
137. Wu H., Guo L., Zhang J., Miao S., He C., Wang B., Wu Y., Chen Z. Sens. Actuators, B Chem. 2016, 230, 359-366.
https://doi.org/10.1016/j.snb.2016.02.088
140. Apetrei C., Nieto M., Rodríguez-Méndez M.L., de Saja J.A. J. Porphyrins Phthalocyanines 2011, 15, 908–917.
https://doi.org/10.1142/ S108842461100377X
150. Li P., Liu H., Ding Y., Wang Y., Chen Y., Zhou Y., Tang Y., Wei H., Cai C., Lu T. J. Mater. Chem. 2012, 22, 15370.
https://doi.org/10.1039/c2jm31350b
154. Zhou Y., Wang S., Zhang Y. J. Phys. Chem. B 2010, 114, 8817-8825.
https://doi.org/10.1021/jp104258d