1. Tietz C., Jelezko F., Gerken U., Schuler S., Schubert A., Rogl H., Wrachtrup J. Biophys. J. 2001, 81, 556–562.
https://doi.org/10.1016/S0006-3495(01)75722-0
2. Cheng Y.C., Fleming G.R. Annu. Rev. Phys. Chem. 2009, 60, 241–262.
https://doi.org/10.1146/annurev.physchem.040808.090259
3. Gall A., Sogalia E., Gulbinas V., Ilioaia O., Robert B., Valkunas L. Biochim. Biophys. Acta 2010, 1797(8), 1465–1469.
https://doi.org/10.1016/j.bbabio.2010.05.004
4. Freiberg A., Trinkunas G. In: Unraveling the Hidden Nature of Antenna Excitations (Laisk A., Nedbal L., Govindjee, Eds.) Amsterdam: Springer Science+Media B.V., 2009. p. 55–82.
5. Unterkofler S., Pflock T., Southall J., Cogdell R.J., Koehler J. ChemPhysChem 2011, 12, 711–716.
https://doi.org/10.1002/cphc.201000588
6. Snellenburg J.J., Johnson M.P., Rubanc A.V., van Grondelle R., Stokkum I.H.M. BBA Bioenergetics 2017, 1858, 854–864.
https://doi.org/10.1016/j.bbabio.2017.08.004
7. Wibmer L., Lourenco L.M.O., Roth A., Katsukis G., Neves M.G.P., Cavaleiro J.A.S., Tomé J.P.C., Torres T., Guldi D.M. Nanoscale 2015, 7, 5674–5682.
https://doi.org/10.1039/C4NR05719H
8. Lee S.-H., Blake I.M., Larsen A.G., McDonald J.A., Ohkubo K., Fukuzumi S., Reimers J.R., Crossley M.J. Chem. Sci. 2016, 7, 6534–6550.
https://doi.org/10.1039/C6SC01076H
9. Kundu S., Patra A. Chem. Rev. 2017, 117, 712–757.
https://doi.org/10.1021/acs.chemrev.6b00036
10. Multiporphyrin Arrays: Fundamentals and Applications (Kim D., Ed.) Singapore: Pan Stanford Publishing Pte. Ltd., 2012. 775 p.
11. Zenkevich E.I., von Borczyskowski C. Biophysical and Physicochemical Studies of Tetrapyrroles. In: Handbook of Porphyrin Science with Application to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine. Vol. 22 – Biophysical and Physicochemical Studies of Tetrapyrroles (Kadish K., Smith K.M., Guilard R., Eds.) Singapore: World Scientific Publishing Co. Pte. Ltd., 2012. p. 67–168.
12. Fukuzumi S., Lee Y.-M., Nam W. ChemPhotoChem 2018, 2, 121–135.
https://doi.org/10.1002/cptc.201700146
13. Mora S.J., Odella E., Moore G.F., Gust D., Moore T.A., Moore A.L. Acc. Chem. Res. 2018, 51, 445−453.
https://doi.org/10.1021/acs.accounts.7b00491
14. Hood D., Sahin T., Parkes-Loach Pamela S., Jiao J., Harris Michelle A., Dilbeck P., Niedzwiedzki D.M., Kirmaier C., Loach P.A., Bocian D.F., Lindsey J.S., Holten D. ChemPhotoChem 2018, 2, 300–313.
https://doi.org/10.1002/cptc.201700182
15. Otsuki J. J. Mater. Chem. A 2018, 6, 6710–6753.
https://doi.org/10.1039/C7TA11274B
16. Nicolini C. Nanoscale Materials. In: Nanotechnology and Nanobiosciences. Singapore: Pan Stanford Publishing Pte. Ltd., 2010. 367 p.
17. Self-Assembled Organic-Inorganic Nanostructures: Optics and Dynamics (Zenkevich E., von Borczyskowski C., Eds.) Singapore: Pan Stanford Publishing Pte. Ltd., 2016. 394 p.
18. Nano- and Biocomposites. (Lau A.K-t., Hussain F., Lafdi K., Eds.) CRC Press, 2017. 408 p.
19. Shikinaka K. Functionalization of Molecular Architectures: Advances and Applications on Low-Dimensional Compounds. Singapore: Pan Stanford Publishing Pte. Ltd., 2018. 350 p.
https://doi.org/10.1201/b22455
20. Ahmed S., Kanchi S. Handbook of Bionanocomposites. Singapore: Pan Stanford Publishing Pte. Ltd., 2018. 318 p.
https://doi.org/10.1201/9781351170680
21. Handbook of Porphyrin Science with Application to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine. Volumes 1 "Supramolecular Chemistry", 4 "Phototherapy, Radioimunotherapy and Imaging", 10 "Catalysis and Bio-Inspired Systems" (Kadish K., Smith K.M., Guilard R., Eds.) Singapore: World Scientific Publishing Co. Pte. Ltd., 2010.
22. Handbook of Carbon Nano Materials. Vol. 1 – Synthesis and Supramolecular Systems, Vol. 2 – Electron Transfer and Applications (D'Souza F., Kadish K.M., Eds.) Singapore: World Scientific Publishing Co. Pte. Ltd., 2011.
23. Murchison H.A., Alden R.G., Allen J.P., Peloquin J.M., Taguchi A.K.W., Woodbury N.W., Williams J.C. Biochemistry 1993, 32, 3498–3505.
https://doi.org/10.1021/bi00064a038
24. Heller B.A., Holten D., Kirmaier C. Biochemistry 1995, 34, 5294–5302.
https://doi.org/10.1021/bi00015a045
25. Chan C.K., Cher L.X.-Q., Di Magno T.J., Hanson D.K., Nance S.L., Schiffer M., Norris J.K., Fleming G.R. Chem. Phys. Lett. 1991, 176, 366–372.
https://doi.org/10.1016/0009-2614(91)90045-B
26. Alden R.G., Parson W.W., Chu Z.T., Warshel A. J. Phys. Chem. 1996, 100, 16761–16770.
https://doi.org/10.1021/jp961271s
27. Michel H., Deisenhofer J. Biochemistry 1988, 27, 1–7.
https://doi.org/10.1021/bi00401a001
28. Allen J.P., Williams J.C. FEBS Lett. 1998, 438, 5–9.
https://doi.org/10.1016/S0014-5793(98)01245-9
29. Shuvalov V.A. Transformation of Solar Energy in the Primary Act of Charge Separation in the Reaction Centers of Photosynthesis. Мoscow: Nauka, 2000. 50 p. (in Russ.)
30. Rodriguez J., Kirmaier C., Johnson M.R., Friesner R.A., Holten D., Sessler J.L. J. Am. Chem. Soc. 1991, 113, 1652–1659.
https://doi.org/10.1021/ja00005a032
31. Borovkov V.V., Gribkov A.A., Kozyrev A.N., Brandis A.S., Ishida A., Sakata Y. Bull. Chem. Soc. Jpn. 1992, 65, 1533–1537.
https://doi.org/10.1246/bcsj.65.1533
32. Gribkova S.E., Evstigneeva R.P., Luzgina V.N. Russ. Chem. Rev. 1993, 62, 963–979.
https://doi.org/10.1070/RC1993v062n10ABEH000057
33. Okomoto K., Fukuzumi S. J. Phys. Chem. B 2005, 109, 7713.
https://doi.org/10.1021/jp050352y
34. Häbele T., Hirsch J., Pöllinger F., Heitele H., Michel-Beyerle M.E., Anders C., Döhling A., Krieger C., Rückemann A., Staab H.A. J. Phys. Chem. 1996, 100, 18269–18274.
https://doi.org/10.1021/jp960423g
35. Rempel U., Meyer S., von Maltzan B., von Borczyskowski C. J. Lumin. 1998, 78, 97.
https://doi.org/10.1016/S0022-2313(97)00310-4
36. Wiehe A., Senge M.O., Schafer A., Speck M., Tannert S., Kurreck H., Roeder B. Tetrahedron 2001, 57, 10089–10110.
https://doi.org/10.1016/S0040-4020(01)01052-3
37. Zenkevich E.I., von Borczyskowski C., Shulga A.M., Bachilo S.M., Rempel U., Willert A. Chem. Phys. 2002, 275, 185–209.
https://doi.org/10.1016/S0301-0104(01)00516-X
38. Gurinovich G.P., Sevchenko A.N., Solovyov K.N. Spectroscopy of Chlorophyll and Related Compounds. Minsk, USSR: Science and Engineering Publishing, 1968. 517 p. (English translation by Natl. Techn. Inform. Service, Springfield, VA 22151).
39. Falk J.E. Porphyrins and Metalloporphyrins. Amsterdam–London–New York: Elsevier Pub. Co., 1964. 266 p.
40. Borovkov V.V., Fillipovich E.I., Evstigneeva R.P. Chem. Heterocycl. Compd. 1988, 24, 494.
https://doi.org/10.1007/BF00755687
41. Larkina E.A., Luzgina V.N., Evstigneeva R.P. Russ. J. Bioorg. Chem. 2002, 28, 322–325.
https://doi.org/10.1023/A:1019500126242
42. Larkina E.A., Balashova T.A., Luzgina V.N., Konovalova N.V., Evstigneeva R.P. Mendeleev Commun. 2005, 234–236.
https://doi.org/10.1070/MC2005v015n06ABEH002087
43. Zenkevich E.I., Sagun E.I., Knyukshto V.N., Stasheuski A.S., Galievsky V.A., Stupak A.P., Blaudeck T., von Borczyskowski C. J. Phys. Chem. C 2011, 115, 21535–21545.
https://doi.org/10.1021/jp203987r
44. Parker C.A. Photoluminescence of Solutions. Amsterdam–London–New York: Elsevier Pub. Co., 1968. 544 p.
45. Egorova G.D., Knyukshto V.N., Solov'ev K.N., Tsvirko M.P. Opt. Spektrosk. 1980, 48, 1101.
46. Murov S.L., Carmichael I., Hug G.L. Handbook of Photochemistry. New-York-Basel-Hong Kong: Marcel Dekker, Inc. 1993. p. 269–278.
47. Foerster T. Modern Quantum Chemistry (Sinanoglu O., Ed.) New York: Academic Press, 1965.
48. Agranovich V.M., Galanin M.D. Electronic Excitation Energy Transfer in Condensed Matter. Amsterdam, New York: North-Holland Pub. Co., 1982. 371 p.
49. Ermolaev V.L., Bodunov E.N., Sveshnikova E.B., Shakhverdov T.A. Non-Radiative Electronic Excitation Energy Transfer. Leningrad: Nauka, 1977. 311 p. (in Russ.).
50. Johnson D.J., Niemczyk M.P., Minsek D.W., Wiererrechy G.P., Svec W.A., Gaines III G.L., Wasielewski M.R. J. Am. Chem. Soc. 1993, 115, 5692–5699.
https://doi.org/10.1021/ja00066a039
51. Furhop J.-H., Mauzerall D. J. Am. Chem. Soc. 1969, 91, 4174–4181.
https://doi.org/10.1021/ja01043a027
52. Zenkevich E., Cichos F., Shulga A., Petrov E., Blaudeck T., von Borczyskowski C. J. Phys. Chem. B. 2005, 109, 8679–8692.
https://doi.org/10.1021/jp040595a
53. Zenkevich E.I., Sagun E.I., Knyukshto V.N., Stasheuski A.S., Galievsky V.A., Stupak A.P., Blaudeck T., von Borczyskowski C. J. Phys. Chem. C 2011, 115, 21535–21545.
https://doi.org/10.1021/jp203987r
54. Kochubeyev G.A., Frolov A.A., Zenkevich E.I., Gurinovich G.P. Dokl. Akad. Nauk BSSR 1988, 32, 175–182. (in Russ.).
55. McGimpsey W.G., Gorner H. Photochem. Photobiol. 1996, 64, 501–509.
https://doi.org/10.1111/j.1751-1097.1996.tb03097.x
56. Albani J.R. J. Fluoresc. 2013, 24, 105–117.
https://doi.org/10.1007/s10895-013-1274-y
57. Marcus R.A. Rev. Modern Phys. 1993, 65, 599–610.
https://doi.org/10.1103/RevModPhys.65.599
58. Sutin N. In: Electron Transfer in Inorganic, Organic, and Biological Systems (Bolton J.M., Mataga N., McLendon J., Eds.) Washington: Amer. Chem. Soc., CSC Symposium Series, 1991. p. 25–47.
59. Wasielewski M.R., Gaines III G.L., O'Neil M.P., Svec W.A., Niemczyk M.P., Prodi L., Gosztola D. In: Dynamics and Mechanisms of Photoinduced Transfer and Related Phenomena (Mataga N., Okada T., Masuhara H., Eds.). Amsterdam: Elsevier Science Publishers, 1992. p. 87–103.
https://doi.org/10.1016/B978-0-444-89191-4.50013-6
60. Heitele H., Michel-Beyerle M.E. J. Am. Chem. Soc. 1985, 107, 8286.
https://doi.org/10.1021/ja00312a093
61. Rehm D., Weller A. Isr. J. Chem. 1970, 8, 259.
https://doi.org/10.1002/ijch.197000029
62. Sagun E.I., Zenkevich E.I., Knyukshto V.N., Shulga A.M., Ivashin N.V. Opt. Specktrosk. 2010, 108, 590–607. (in Russ.).
63. Murrov S.L., Carmichael I., Hug G.L. Handbook of Photochemistry. New-York-Basel-Hong Kong: Marcel Deccer, Inc. 1993, p. 269–278.
64. Mayranovskiy V.G. Eleсtrochemistry of Porphyrins. In: Porphyrins: Spectroscopy, Electrochemistry, Application. (Yenikopolyan N.S., Ed.) Moscow: Nauka, 1987. p. 127–181 (in Russ.).
65. Sagun E.I., Zenkevich E.I., Knyukshto V.N., Shulga A.M., Tikhomirov S.A. Proc. SPIE 6727, ICONO 2007: Nonlinear Laser Spectroscopy and High-Precision Measurements; and Fundamentals of Laser Chemistry and Biophotonics, 2007. 6227u p.
66. Asahi T., Ohkohchi M., Matsusaka R., Mataga N., Zang R.P., Osuka A., Maruyama K. J. Amer. Chem. Soc. 1993, 115, 5665.
https://doi.org/10.1021/ja00066a036
67. Atkins, P., de Paula J. Atkin's Physical Chemistry. Oxford: Oxford University Press, 7th Ed., 2002. 577 p.
68. Gurinovich G.P., Zenkevich E.I., Sagun E.I., Shulga A.M. Opt. Specktrosk. 1984, 56, 1037–1043. (in Russ.).
69. Zenkevich E.I., Shulga A.M., Sagun E.I., Gurinovich G.P., Chernook A.V. Teubner-Texte zur Physik, Leipzig: BSB B.G. Teubner Verlagsgesselschaft, 1985, Band 4, 297–300.
70. Chernook A.V., Shulga A.M., Zenkevich E.I., Rempel U., von Borczyskowski C. Ber. Bunsenges. Phys. Chem. 1996, 100, 114–118.
https://doi.org/10.1002/bbpc.19961001224
71. Johnson D.J., Niemczyk M.P., Minsek D.W., Wiererrechy G.P., Svec W.A., Gaines III G.L., Wasielewski M.R. J. Am. Chem. Soc. 1993, 115, 5692–5701.
https://doi.org/10.1021/ja00066a039