1. Celli J.P., Spring B.Q., Rizvi I., Evans C.L., Samkoe K.S., Verma S., Pogue B.W., Hasan T. Chem. Rev. 2010, 110, 2795–2838.
https://doi.org/10.1021/cr900300p
2. Li X., Lee S., Yoon J. Chem. Soc. Rev. 2018, 47, 1174–1188.
https://doi.org/10.1039/C7CS00594F
3. Wainwright M., Maisch T., Nonell S., Plaetzer K., Almeida A., Tegos G.P., Hamblin M.R. Lancet Infect. 2017, 17, e49–e55.
https://doi.org/10.1016/S1473-3099(16)30268-7
4. Ethirajan M., Chen Y., Joshi P., Pandey R.K. Chem. Soc. Rev. 2011, 40, 340–362.
https://doi.org/10.1039/B915149B
5. Moser J.G. Photodynamic Tumor Therapy: 2nd and 3rd Generation Photosensitizers. Amsterdam: Harwood Academic Publishers, 1998.
6. MacDonald I.J., Dougherty T.J. J. Porphyrins Phthalocyanines 2001, 5, 105–129.
https://doi.org/10.1002/jpp.328
7. Sewald N., Jakubke H.D. Application of Peptides and Proteins. Darmstadt: Wiley-VCH Verlag GmbH & Co. KGaA, 2009.
8. Lu Y., Low P.S. Adv. Drug Delivery Rev. 2002, 54, 675–693.
https://doi.org/10.1016/S0169-409X(02)00042-X
9. Skupin-Mrugalska P., Piskorz J., Goslinski T., Mielcarek J., Konopka K., Düzgünes N. Drug Discovery Today 2013, 18, 776–784.
https://doi.org/10.1016/j.drudis.2013.04.003
10. Dwek R.A. Chem. Rev. 1996, 96, 683–720.
https://doi.org/10.1021/cr940283b
11. Almeida-Marrero V., van de Winckel E., Anaya-Plaza E., Torres T., de la Escosura A. Chem. Soc. Rev. 2018, 47, 7369–7400.
https://doi.org/10.1039/C7CS00554G
12. Sharman W.M., van Lier J.E., Allen C.M. Adv. Drug Delivery Rev. 2004, 56, 53–76.
https://doi.org/10.1016/j.addr.2003.08.015
13. Liu H.-Y., Huang J.-W., Tian X., Jiao X.-D., Luo G.-T., Ji L.-N. Chem. Commun. 1997, 16, 1575–1576.
https://doi.org/10.1039/a702876h
14. Biron E., Voyer N. Chem. Commun. 2005, 37, 4652–4654.
https://doi.org/10.1039/b508380j
15. Liu K., Zhang H., Xing R., Zou Q., Yan X. ACS Nano 2017, 11, 12840–12848.
https://doi.org/10.1021/acsnano.7b08215
16. Yewale C., Baradia D., Vhora I., Patil S., Misra A. Biomaterials 2013, 34, 8690–8707.
https://doi.org/10.1016/j.biomaterials.2013.07.100
17. Cornelio D.B., Roesler R., Schwartsmann G. Ann. Oncol. 2007, 1457–1466.
https://doi.org/10.1093/annonc/mdm058
18. Wimley W.C., Hristova K. J. Membr. Biol. 2011, 239, 27–34.
https://doi.org/10.1007/s00232-011-9343-0
19. Ongarora B.G., Fontenot K.R., Hu X., Sehgal I., Satyanarayana-Jois S.D., Vicente M.G.H. J. Med. Chem. 2012, 55, 3725–3738.
https://doi.org/10.1021/jm201544y
20. Yu L., Wang Q., Wong R.C.H., Zhao S., Ng D.K.P., Lo P-C. Dyes and Pigments 2019, 163, 197–203.
https://doi.org/10.1016/j.dyepig.2018.11.055
21. Mew D., Wat C.K., Towers G.H.N., Levy J.G. J. Immunol. 1983, 130, 1473–1477.
22. Kobayashi H., Choyke P.L. Nanoscale 2016, 8, 12504–12509.
https://doi.org/10.1039/C5NR05552K
23. Mitsunaga M., Ogawa M., Kosaka N., Rosenblum L.T., Choyke P.L., Kobayashi H. Nat. Med. 2011, 17, 1685–1691.
https://doi.org/10.1038/nm.2554
24. Mitsunaga M., Nakajima T., Sano K., Choyke P.L., Kobayashi H. Bioconjugate Chem. 2012, 23, 604–609.
https://doi.org/10.1021/bc200648m
25 Zhang J., Niu G., Lang L., Li F., Fan X., Yan X., Yao S., Yan W., Huo L., Chen L., Li Z., Zhu Z., Chen X. J. Nucl. Med. 2017, 58, 228–234.
https://doi.org/10.2967/jnumed.116.177048
26. Ranyuk E., Cauchon N., Klarskov K., Guérin B., van Lier J.E. J. Med. Chem. 2013, 56, 1520–1534.
https://doi.org/10.1021/jm301311c
27. Fanali G., di Masi A., Trezza V., Marino M., Fasano M., Ascenzi P. Mol. Aspects Med. 2012, 33, 209–290.
https://doi.org/10.1016/j.mam.2011.12.002
28. Larroque C., Pelegrin A., van Lier J.E. Br. J. Cancer 1996, 74, 1886–1890.
https://doi.org/10.1038/bjc.1996.649
29. Brasseur N., Langlois R., La Madeleine C., Ouellet R., van Lier J.E. Photochem. Photobiol. 1999, 69, 345–352.
https://doi.org/10.1562/0031-8655(1999)069<0345:RMTOPT>2.3.CO;2
30. Kollár J., Machacek M., Jancarova A., Kubat P., Kucera R., Miletin M., Novakova V., Zimcik P. Dyes and Pigments 2019, 162, 358–366.
https://doi.org/10.1016/j.dyepig.2018.10.051
31. Machacek M., Kollár J., Miletin M., Kucera R., Kubát P., Simunek T., Novakova V., Zimcik P. RSC Adv. 2016, 6, 10064–10077.
https://doi.org/10.1039/C5RA25881B
32. Li F., Zhao Y., Mao C., Kong Y., Ming X. Mol. Pharmaceutics 2017, 14, 2793–2804.
https://doi.org/10.1021/acs.molpharmaceut.7b00321
33. Uchida M., Klem M.T., Allen M., Suci P., Flenniken M., Gillitzer E., Varpness Z., Liepold L.O., Young M., Douglas T. Adv. Mater. 2007, 19, 1025–1042.
https://doi.org/10.1002/adma.200601168
34. de la Escosura A., Nolte R.J.M., Cornelissen J.J.L.M. J. Mater. Chem. 2009, 19, 2274–2278.
https://doi.org/10.1039/b815274h
35. Brasch M., De La Escosura A., Ma Y., Uetrecht C., Heck A.J.R., Torres T., Cornelissen J.J.L.M. J. Am. Chem. Soc. 2011, 133, 6878–6881.
https://doi.org/10.1021/ja110752u
36. Setaro F., Brasch M., Hahn U., Koay M.S.T., Cornelissen J.J.M.L., de la Escosura A., Torres T. Nano Lett. 2015, 15, 1245–1251.
https://doi.org/10.1021/nl5044055
37. Mikkilä J., Anaya-Plaza E., Liljeström V., Ruíz-Castón J., Torres T., de la Escosura A., Kostiainen M.A. ACS Nano 2016, 10, 1565–1571.
https://doi.org/10.1021/acsnano.5b07167
38. Liu X., Qi C., Bing T., Cheng X., Shangguan D. Anal. Chem. 2009, 81, 3699–3704.
https://doi.org/10.1021/ac9003375
39. Nesterova I.V., Erdem S.S., Pakhomov S., Hammer R.P., Soper S.A. J. Am. Chem. Soc. 2009, 131, 2432–2433.
https://doi.org/10.1021/ja8088247
40. Nesterova I.V., Bennett C.A., Erdem S.S., Hammer R.P., Deininger P.L., Soper S.A. Analyst 2011, 136, 1103–1105.
https://doi.org/10.1039/c0an00782j
41. Kopecky K., Novakova V., Miletin M., Kučera R., Zimcik P. Bioconjugate Chem. 2010, 21, 1872–1879.
https://doi.org/10.1021/bc100226x
42. Demuth J., Kucera R., Kopecky K., Havlínová Z., Libra A., Novakova V., Miletin M., Zimcik P. Chem. Eur. J. 2018, 24, 9658–9666.
https://doi.org/10.1002/chem.201801319
43. Sessa G., Weissmann G. J. Biol. Chem. 1970, 245, 3295–3301.
44. García M.A., Alarcón E., Mu-oz M., Scaiano J.C., Edwards A.M., Lissi E. Photochem. Photobiol. Sci. 2011, 10, 507–514.
https://doi.org/10.1039/C0PP00289E
45. Lv H.-J., Zhang X.-T., Wang S., Xing G.-W. Analyst 2017, 142, 603–607.
https://doi.org/10.1039/C6AN02705A
46. Pérez A.P., Casasco A., Schilrreff P., Tesoriero M.V.D., Duempelmann L., Altube M.J., Higa L., Morilla M.J., Petray P., Romero E.L. Int. J. Nanomed. 2014, 9, 3335–3345.
https://doi.org/10.2147/IJN.S60543
47. Gardner D.M., Taylor V.M., Cede-o D.L., Padhee S., Robledo S.M., Jones M.A., Lash T.D., Vélez I.D. Photochem. Photobiol. 2010, 86, 645–652.
https://doi.org/10.1111/j.1751-1097.2010.00705.x
48. Yang Y.-T., Chien H.-F., Chang P.-H., Chen Y.-C., Jay M., Tsai T., Chen C.-T. Lasers Surg. Med. 2013, 45, 175–185.
https://doi.org/10.1002/lsm.22124
49. Séguier S., Souza S.L.S., Sverzut A.C.V., Simioni A.R., Primo F.L., Bodineau A., Correa V.M.A., Coulomb B., Tedesco A.T. J. Photochem. Photobiol. B 2010, 101, 348–354.
https://doi.org/10.1016/j.jphotobiol.2010.08.007
50. Mijan M.C., Longo J.P.F., Duarte de Melo L.N., Simioni A.R., Tedesco A.C., Azevedo R.B. J. Nanomed. Nanotechnol. 2014, 5, 218.
https://doi.org/10.4172/2157-7439.1000218
51. Broekgaarden M., de Kroon A.I.P.M., van Gulik T.M., Heger M. Curr. Med. Chem. 2014, 21, 377–391.
https://doi.org/10.2174/09298673113209990211
52. Castagnos P., Siqueira-Moura M.P., Goto P.L., Pérez E., Franceschi S., Rico-Lattes I., Tedesco A.C., Blanzat M. RSC Adv. 2014, 4, 39372–39377.
https://doi.org/10.1039/C4RA04876H
53. Feng L., Cheng L., Dong Z., Tao D., Barnhart T.E., Cai W., Chen M., Liu Z. ACS Nano 2017, 11, 927–937.
https://doi.org/10.1021/acsnano.6b07525
54. Feng L., Tao D., Dong Z., Chen Q., Chao Y., Liu Z., Chen M. Biomaterials 2017, 127, 13–24.
https://doi.org/10.1016/j.biomaterials.2016.11.027
55. Tachikawa S., El-Zaria M.E., Inomata R., Sato S., Nakamura H. Bioorg. Med. Chem. 2014, 22, 4745–4751.
https://doi.org/10.1016/j.bmc.2014.07.003
56. Zhou F., Feng B., Wang T.T., Wang D.G., Meng Q.S., Zeng J.F., Zhang Z.W., Wang S.L., Yu H.J., Li Y.P. Adv. Funct. Mater. 2017, 27, 1606530.
https://doi.org/10.1002/adfm.201606530
57. Morgan J., Gray A.G., Huehns E.R. Br. J. Cancer 1989, 59, 366–370.
https://doi.org/10.1038/bjc.1989.73
58. Morgan J., MacRobert A., Gray A.G., Huehns E.R. Br. J. Cancer 1992, 65, 58–64.
https://doi.org/10.1038/bjc.1992.11
59. Broekgaarden M., van Vught R., Oliveira S., Roovers R.C., van Bergen EnHenegouwen P.M.P., Pieters R.J., van Gulik T.M., Breukink E., Heger M. Nanoscale 2016, 8, 6490–6494.
https://doi.org/10.1039/C6NR00014B
60. Gijsens A., Derycke A., Missiaen L., De Vos D., Huwyler J., Eberle A., de Witte P. Int. J. Cancer 2002, 101, 78–85.
https://doi.org/10.1002/ijc.10548
61. Derycke A.S.L., Kamuhabwa A., Gijsens A., Roskams T., De Vos D., Kasran A., Huwyler J., Missiaen L., de Witte P.A.M. J. Natl. Cancer Inst. 2004, 96, 1620–1630.
https://doi.org/10.1093/jnci/djh314
62. Ngweniform P., Abbineni G., Cao B., Mao C. Small 2009, 5, 1963–1969.
https://doi.org/10.1002/smll.200801902
63. Hota R., Baek K., Yun G., Kim Y., Jung H., Park K.M., Yoon E., Joo T., Kang J., Park C.G., Bae S.M., Ahn W.S., Kim K. Chem. Sci. 2013, 4, 339–344.
https://doi.org/10.1039/C2SC21254D
64. Ikonen E. Nat. Rev. Mol. Cell Biol. 2008, 9, 125–138.
https://doi.org/10.1038/nrm2336
65. Segalla A., Milanesi C., Jori G., Capraro H.G., Isele U., Schieweck K. Br. J. Cancer 1994, 69, 817–825.
https://doi.org/10.1038/bjc.1994.160
66. Samavat H., Kurzer M.S. Cancer Lett. 2015, 356, 231–243.
https://doi.org/10.1016/j.canlet.2014.04.018
67. Khan E.H., Ali H., Tian H., Rousseau J., Tessier G., Shafiullah M., van Lier J.E. Bioorg. Med. Chem. Lett. 2003, 13, 1287–1290.
https://doi.org/10.1016/S0960-894X(03)00120-3
68. Maillard P., Gaspard S., Guerquin-Kernand J.L., Momenteau M. J. Am. Chem. Soc. 1989, 111, 9125–9127.
https://doi.org/10.1021/ja00207a033
69. Fülling G., Schröder D., Franck B. Angew. Chem. Int. Ed. Engl. 1989, 28, 1519–1521.
https://doi.org/10.1002/anie.198915191
70. Crini G. Chem. Rev. 2014, 114, 10940–10975.
https://doi.org/10.1021/cr500081p
71. Ribeiro A.O., Tomé J.P.C., Neves M.G.P.M.S., Tomé A.C., Cavaleiro J.A.S., Serra O.A., Torres T. Tetrahedron Lett. 2006, 47, 6129–6132.
https://doi.org/10.1016/j.tetlet.2006.06.068
72. Lourenço L.M.O., Pereira P.M.R., Maciel E., Válega M., Domingues F.M.J., Domingues M.R.M., Neves M.G.P.M.S., Cavaleiro J.A.S., Fernandes R., Tomé J.P.C. Chem. Commun. 2014, 50, 8363–8366.
https://doi.org/10.1039/C4CC02226B
73. Moon R.J., Martini A., Nairn J., Simonsen J., Youngblood J. Chem. Soc. Rev. 2011, 40, 3941–3994.
https://doi.org/10.1039/c0cs00108b
74. Anaya-Plaza E., van de Winckel E., Mikkilä J., Malho J.M., Ikkala O., Gulías O., Bresolí-Obach R., Agut M., Nonell S., Torres T., Kostiainen M.A., de la Escosura A. Chem. Eur. J. 2017, 23, 4320–4326.
https://doi.org/10.1002/chem.201605285
75. Sun G., Mao J.J. Nanomedicine 2012, 7, 1771–1784.
https://doi.org/10.2217/nnm.12.149
76. Fraix A., Gref R., Sortino S. J. Mater. Chem. B 2014, 2, 3443–3449.
https://doi.org/10.1039/C4TB00257A
77. Ylä-Herttuala S., Bolstad Christensen J.B., Moghimi S.M., Torres Cebada T., Trohopoulos P.N., Makinen P., Ficker M., Wu L., Medel-Gonzalez M. Nano-systems for Therapy and/or Diagnosis and/or Therapy Monitoring and/or Theragnostic of Disease. PCT/EP 16168476.6; 05/05/2016.
78. Ylä-Herttuala S., Mäkinen P., van Nostrum C.F., Wennink J.W.H., Torres Cebada T., de la Escosura Navazo A., Setaro F., van de Winckel E., Trohopoulos P.N. Polymeric Micelle-phthalocyaninenano-systems for Photodynamic Therapy and/or Fluorescence-based Imaging. PCT/EP16177001.1; 29/06/2016.
79. Dozzo P., Koo M.-S., Berger S., Forte T.M., Kahl S.B. J. Med. Chem. 2005, 48, 357–359.
https://doi.org/10.1021/jm049277q
80. Sibrian-Vázquez M., Jensen T.J., Vicente M.G.H. J. Med. Chem. 2008, 51, 2915–2923.
https://doi.org/10.1021/jm701050j
81. Sehgal I., Sibrian-Vázquez M., Vicente M.G.H. J. Med. Chem. 2008, 51, 6014–6020.
https://doi.org/10.1021/jm800444c
82. Sibrian-Vázquez M., Jensen T.J., Hammer R.P., Vicente M.G.H. J. Med. Chem. 2006, 49, 1364–1372.
https://doi.org/10.1021/jm050893b
83. Doselli R., Tampieri C., Ruiz-González R., De Munari S., Ragás X., Sánchez-García D., Agut M., Nonell S., Reddi E., Gobbo M. J. Med. Chem. 2013, 56, 1052–1063.
https://doi.org/10.1021/jm301509n
84. Gueddari N., Favre G., Hachem H., Marek E., Le Gaillard F., Soula G. Biochimie 1993, 75, 811–819.
https://doi.org/10.1016/0300-9084(93)90132-C
85. Bricarello D.A., Smilowitz J.T., Zivkovic A.M., German J.B., Parikh A.N. ACS Nano 2011, 5, 42–57.
https://doi.org/10.1021/nn103098m
86. Shaw J.M. Lipoproteins as Carriers of Pharmacological Agents. New York: Dekker, 1991. 408 p.
87. Tang J., Chen J.-J., Jing J., Chen J.-Z., Lv H., Yu Y., Xu P., Zhang J.-L. Chem. Sci. 2014, 5, 558–566.
https://doi.org/10.1039/C3SC52247D
88. Maruani A., Savoie H., Bryden F., Caddick S., Boyle R., Chudasama V. Chem. Commun. 2015, 51, 15304–15307.
https://doi.org/10.1039/C5CC06985H
89. Cohen B.A., Bergkvist M. J. Photochem. Photobiol. B 2013, 121, 67–74.
https://doi.org/10.1016/j.jphotobiol.2013.02.013
90. Stephanopoulos N., Tong G.J., Hsiao S.C., Francis M.B. ACS Nano 2010, 4, 6014–6020.
https://doi.org/10.1021/nn1014769
91. Watanabe K., Kitagishi H., Kano K. Angew. Chem. Int. Ed. 2013, 52, 6894–6897.
https://doi.org/10.1002/anie.201302470
92. Kitagishi H., Chai F., Negi S., Sugiura Y., Kano K. Chem. Commun. 2015, 51, 2421–2424.
https://doi.org/10.1039/C4CC09042J
93. Zhao J., Zhang H.-Y., Sun H.-L., Liu Y. Chem. Eur. J. 2015, 21, 4457–4464.
https://doi.org/10.1002/chem.201405943
94. Oliveri V., Zimbone S., Giuffrida M.L., Bellia F., Tomasello M.F., Vecchio G. Chem. Eur. J. 2018, 24, 6349–6353.
https://doi.org/10.1002/chem.201800807
95. Chauhan P., Hadad C., Sartorelli A., Zarattini M., Herreros-López A., Mba M., Maggini M., Prato M., Carofiglio T. Chem. Commun. 2013, 49, 8525–8527.
https://doi.org/10.1039/c3cc44852e
96. Mbakidi J.P., Brégier F., Ouk T.S., Granet R., Alves S., Rivière E., Chevreux S., Lemercier G., Sol V. ChemPlusChem 2015, 80, 1416–1426.
https://doi.org/10.1002/cplu.201500087
97. Zhang Z., He R., Yan K., Guo Q.-N., Lu Y.-G., Wang X.-X., Lei H., Li Z.-Y. Bioorg. Med. Chem. Lett. 2009, 19, 6675–6678.
https://doi.org/10.1016/j.bmcl.2009.10.003
98. Li H., Fedorova O.S., Trumble W.R., Fletcher T.R., Czuchajowski L. Bioconjugate Chem. 1997, 8, 49–56.
https://doi.org/10.1021/bc960074t
99. Mir Y., Elrington S.A., Hasan T. Nanomedicine 2013, 9, 1114–1122.
https://doi.org/10.1016/j.nano.2013.02.005
100. Carter K.A., Shao S., Hoopes M.I., Luo D., Ahsan B., Grigoryants V.M., Song W., Huang H., Zhang G., Pandey R.K., Geng J., Pfeifer B.A., Scholes C.P., Ortega J., Karttunen M., Lovell J.F. Nat. Commun. 2014, 5, 3546.
https://doi.org/10.1038/ncomms4546
101. Shao S., Geng J., Yi H.A., Gogia S., Neelamegham S., Jacobs A., Lovell J.F. Nat. Chem. 2015, 7, 438–446.
https://doi.org/10.1038/nchem.2236
102. Lovell J.F., Jin C.S., Huynh E., Jin H., Kim C., Rubinstein J.L., Chan W.C.W., Cao W., Wang L.V., Zheng G. Nat. Mat. 2011, 10, 324–332.
https://doi.org/10.1038/nmat2986
103. Dolansky J., Henke P., Malá Z., Zárská L., Kubát P., Mosinger J. Nanoscale 2018, 10, 2639–2648.
https://doi.org/10.1039/C7NR08822A
104. Jinadasa R.G.W., Hu X., Vicente M.G.H., Smith K.M. J. Med. Chem. 2011, 54, 7464–7476.
https://doi.org/10.1021/jm2005139
105. Meng Z., Yu B., Han G., Liu M., Shan B., Dong G., Miao Z., Jia N., Tan Z., Li B., Zhang W., Zhu H., Sheng C., Yao J. J. Med. Chem. 2016, 59, 4999–5010.
https://doi.org/10.1021/acs.jmedchem.6b00352
106. Mendive-Tapia L., Subirós-Funosas R., Zhao C., Albericio F., Read N.D., Lavilla R., Vendrell M. Nat. Protoc. 2017, 12, 1588–1619.
https://doi.org/10.1038/nprot.2017.048
107. Mendive-Tapia L., Zhao C., Akram A.R., Preciado S., Albericio F., Lee M., Serrels A., Kielland N., Read N.D., Lavilla R., Vendrell M. Nat. Commun. 2016, 7, 10940.
https://doi.org/10.1038/ncomms10940
108. Subirós-Funosas R., Mendive-Tapia L., Sot J., Pound J.D., Barth N., Varela Y., Go-i F.M., Paterson M., Gregory C.D., Albericio F., Dransfield I., Lavilla R., Vendrell M. Chem. Commun. 2017, 53, 945–948.
https://doi.org/10.1039/C6CC07879F
109. Zhang N., Zhao F., Zou Q., Li Y., Ma G., Yan X. Small 2016, 12, 5936–5943.
https://doi.org/10.1002/smll.201602339
110. Battogtokh G., Ko Y.T. J. Mater. Chem. B 2015, 3, 9349–9359.
https://doi.org/10.1039/C5TB01719J
111. Lu W.-L., Lan Y.-Q., Xiao K.-J., Xu Q.-M., Qu L.-L., Chen Q.-Y., Huang T., Gao J., Zhao Y. J. Mater. Chem. B 2017, 5, 1275–1283.
https://doi.org/10.1039/C6TB02575G
112. Agadjanian H., Ma J., Rentsendorj A., Valluripalli V., Hwang J.Y., Mahammed A., Farkas D.L., Gray H.B., Gross Z., Medina-Kauwe L.K. Proc. Natl. Acad. Sci. USA 2009, 106, 6105–6110.
https://doi.org/10.1073/pnas.0901531106
113. Barata J.F.B., Zamarrón A., Neves M.G.P.M.S., Faustino M.A.F., Tomé A.C., Cavaleiro J.A.S., Róder B., Juarranz A., Sanz-Rodríguez F. Eur. J. Med. Chem. 2015, 92, 135–144.
https://doi.org/10.1016/j.ejmech.2014.12.025
114. Silva J.N., Silva A.M.G., Tomé J.P., Ribeiro A.O., Domingues M.R.M., Cavaleiro J.A.S., Silva A.M.S., Neves M.G.P.M.S., Tomé A.C., Serra O.A., Bosca F., Filipe P., Santus R., Morlière P. Photochem. Photobiol. Sci. 2008, 7, 834–843.
https://doi.org/10.1039/b800348c
115. Shukla S.K., Mishra A.K., Arotiba O.A., Mamba B.B. Int. J. Biol. Macromol. 2013, 59, 46–58.
https://doi.org/10.1016/j.ijbiomac.2013.04.043
116. Gaware V.S., Hakerud M., Juzeniene A., Hogset A., Berg K., Másson M. Biomacromolecules 2017, 18, 1108–1126.
https://doi.org/10.1021/acs.biomac.6b01670
117. Oh I.-H., Min H.S., Li L., Tran T.H., Lee Y.-K., Kwon I.C., Choi K., Kimand K., Huh K.M. Biomaterials 2013, 34, 6454–6463.
https://doi.org/10.1016/j.biomaterials.2013.05.017
118. Lim C.-K., Shin J., Kwon I.C., Jeong S.Y., Kim S. Bioconjugate Chem. 2012, 23, 1022–1028.
https://doi.org/10.1021/bc300012g
119. Chu C.W., Ryu J.H., Jeong Y.-I., Kwak T.W., Lee H.L., Kim H.Y., Son G.M., Kim H.W., Kang D.H. J. Nanomater. 2016, 2016, 4075803.
https://doi.org/10.1155/2016/4075803
120. Dziuba D., Jurkiewicz P., Cebecauer M., Hof M., Hocek M. Angew. Chem. 2016, 128, 182–186.
https://doi.org/10.1002/ange.201507922
121. Boutorine A.S., Brault D., Takasugi M., Delgado O., Hélène C. J. Am. Chem. Soc. 1996, 118, 9469–9476.
https://doi.org/10.1021/ja960062i
122. Zhang L., Er J.C., Ghosh K.K., Chung W.J., Yoo J., Xu W., Zhao W., Phan A.T., Chang Y.T. Sci. Rep. 2014, 4, 3776.
https://doi.org/10.1038/srep03776
123. Wennink J.W.H., Liu Y., Mäkinen P.I., Setaro F., de la Escosura A., Bourajjaj M., Lappalainen J.P., Holappa L.P., van den Dikkenberg J.B., al Fartousi M., Trohopoulos P.N., Ylä-Herttuala S., Torres T., Hennink W.E., van Nostrum C.F. Eur. J. Pharm. Sci. 2017, 107, 112–125.
https://doi.org/10.1016/j.ejps.2017.06.038
124. Ragoussi M.-E., Torres T. Chem. Commun. 2015, 51, 3957–3972.
https://doi.org/10.1039/C4CC09888A
125. Urbani M., Ragoussi M.-E., Nazeeruddin M.K., Torres T. Coord. Chem. Rev. 2019, 381, 1–64.
https://doi.org/10.1016/j.ccr.2018.10.007
126. Hardin B.E., Yum J.-H., Hoke E.T., Jun Y.C., Péchy P., Torres T., Brongersma M.L., Nazeeruddin M.K., Grätzel M., McGehee M.D. Nano Lett. 2010, 10, 3077–3083.
https://doi.org/10.1021/nl1016688
127. Morandeira A., López-Duarte I., O’Regan B., Martínez-Díaz M.V., Forneli A., Palomares E., Torres T., Durrant J.R. J. Mater. Chem. 2009, 19, 5016–5026.
https://doi.org/10.1039/b904179f
128. González-Delgado J.A., Kennedy P.J., Ferreira M., Tomé J.P.C., Sarmento B. J. Med. Chem. 2016, 59, 4428–4442.
https://doi.org/10.1021/acs.jmedchem.5b01129
129. Abrahamse H., Hamblin M.R. Biochem. J. 2016, 473, 347–364.
https://doi.org/10.1042/BJ20150942
130. Heukers R., van Bergen en Henegouwen P.M., Oliveira S. Nanomedicine 2014, 10, 1441–1451.
https://doi.org/10.1016/j.nano.2013.12.007
131. Kwiatkowski S., Knap B., Przystupski D., Saczko J., Kędzierska E., Knap-Czop K., Kotlińska J., Michel O., Kotowski K., Kulbacka J. Biomed. Pharmacother. 2018, 106, 1098–1107.
https://doi.org/10.1016/j.biopha.2018.07.049