1. de la Torre G., Claessens C.G., Torres T. Chem. Commun. 2007, 2000–2015.
https://doi.org/10.1039/B614234F
2. Drain C.M., Varotto A., Radivojevic I. Chem. Rev. 2009, 109, 1630–1658.
https://doi.org/10.1021/cr8002483
3. de la Torre G., Bottari G., Sekita M., Hausmann A., Guldi D.M., Torres T. Chem. Soc. Rev. 2013, 42, 8049–8105.
https://doi.org/10.1039/c3cs60140d
4. Beletskaya I., Tyurin V.S., Tsivadze A.Y., Guilard R., Stem C. Chem. Rev. 2009, 109, 1659–1713.
https://doi.org/10.1021/cr800247a
5. Spitler E.L., Dichtel W.R. Nat. Chem. 2010, 2, 672–677.
https://doi.org/10.1038/nchem.695
6. Bezzu G., Helliwell M., Warren J.E., Allan D.R., McKeown N.B. Science 2010, 327, 1627–1630.
https://doi.org/10.1126/science.1184228
7. Gao W-Y., Chrzanowski M., Ma S. Chem. Soc. Rev. 2014, 43, 5841–5866.
https://doi.org/10.1039/C4CS00001C
8. Fateeva A., Clarisse J., Pilet G., Grenèche J-M., Nouar F., Abeykoon B.K., Guegan F., Goutaudier C., Luneau D., Warren J.E., Rosseinsky M.J., Devic T. Cryst. Growth Des. 2015, 15, 1819–1826.
https://doi.org/10.1021/cg501855k
9. Sorokin A.B. Chem. Rev. 2013, 113, 8152–8191.
https://doi.org/10.1021/cr4000072
10. Mackintosh H.J., Budd P.M., McKeown N.B. J. Mater. Chem. 2008, 18, 573–578.
https://doi.org/10.1039/B715660J
11. Abeykoon B., Devic T., Grenèche J-M., Fateeva A., Sorokin A.B. Chem. Commun. 2018, 54, 10308–10311.
https://doi.org/10.1039/C8CC06082G
12. Durot S., Taesh J., Heitz V. Chem. Rev. 2014, 114, 8542–8578.
https://doi.org/10.1021/cr400673y
13. Bottari G., de la Torre G., Torres T. Acc. Chem. Res. 2015, 48, 900–910.
https://doi.org/10.1021/ar5004384
14. Bottari G., de la Torre G., Guldi D.M., Torres T. Chem. Rev. 2010, 110, 6768–6816.
https://doi.org/10.1021/cr900254z
15. Fuhrhop J-H. Langmuir 2014, 30, 1–12.
https://doi.org/10.1021/la402228g
16. D'Souza F., Ito O. Chem. Commun. 2009, 4913–4928.
https://doi.org/10.1039/b905753f
17. Ermakova E.V., Enakieva Yu.Yu., Zvyagina A.I., Gorbunova Yu.G., Kalinina M.A., Arslanov V.V. Macroheterocycles 2016, 9, 378–386.
https://doi.org/10.6060/mhc161177a
18. Ermakova E.V., Enakieva Yu.Yu., Meshkov I.N., Baranchikov A.E., Zvyagina A.I., Gorbunova Yu.G., Tsivadze A.Yu., Kalinina M.A., Arslanov V.V. Macroheterocycles 2017, 10, 496–504.
https://doi.org/10.6060/mhc171259a
19. Samaroo D., Soll C.E., Todaro L.J., Drain C.M. Org. Lett. 2006, 8, 4985–4988.
https://doi.org/10.1021/ol060946z
20. Uvarova M.A., Sinelshchikova A.A., Golubnichaya M.A., Nefedov S.E., Enakieva Y.Y., Gorbunova Y.G., Tsivadze A.Y., Stern C., Bessmertnykh-Lemeune A., Guilard R. Cryst. Growth Des. 2014, 14, 5976–5984.
https://doi.org/10.1021/cg501157e
21. Ragoussi M-E., Torres T. Chem. Asian J. 2014, 9, 2676–2707.
https://doi.org/10.1002/asia.201402311
22. Enakieva Y.Y., Bessmertnych A.G., Gorbunova Y.G., Stern C., Rousselin Y., Tsivadze A.Y., Guilard R. Org. Lett. 2009, 11, 3842–3845.
https://doi.org/10.1021/ol901421e
23. Vinogradova E.V., Enakieva Y.Y., Nefedov S.E., Birin K.P., Tsivadze A.Y., Gorbunova Y.G., Bessmertnych-Lemeune A.G., Stern C., Guilard R. Chem. Eur. J. 2012, 118, 15092–15104.
https://doi.org/10.1002/chem.201202596
24. Sinelshchikova A.A., Nefedov S.E., Enakieva Y.Y., Gorbunova Y.G., Tsivadze A.Y., Kadish K.M., Chen P., Bessmertnych-Lemeune A., Stern C., Guilard R. Inorg. Chem. 2013, 52, 999–1008.
https://doi.org/10.1021/ic302257g
25. Zubatyuk R.I., Sinelshchikova A.A., Enakieva Y.Y., Gorbunova Y.G., Tsivadze A.Y., Nefedov S.E., Bessmertnykh-Lemeune A., Guilard R., Shishkin O.V. CrystEngComm 2014, 16, 10428–10438.
https://doi.org/10.1039/C4CE01623H
26. Drain C.M., Russell K.C., Lehn J-M. Chem. Commun. 1996, 337–338.
https://doi.org/10.1039/cc9960000337
27. Hill J.P., Wakayama Y., Akada M., Ariga K. J. Phys. Chem. C 2007, 111, 16174–16180.
https://doi.org/10.1021/jp0745945
28. Sheinin V.B., Kulikova O.M., Aleksandriiskii V.V., Koifman O.I. Macroheterocycles 2016, 9, 353–360.
https://doi.org/10.6060/mhc161067s
29. Ortiz de Montellano P.R. Chem. Rev. 2010, 110, 932–948.
https://doi.org/10.1021/cr9002193
30. Costas M. Coord. Chem. Rev. 2011, 255, 2912–2932.
https://doi.org/10.1016/j.ccr.2011.06.026
31. Che C-M., Kar-Yan L., Zhou C.Y., Huang J-S. Chem. Soc. Rev. 2011, 40, 1950–1975.
https://doi.org/10.1039/c0cs00142b
32. Kudrik E.V., Afanasiev P., Alvarez L.X., Blondin G., Clémancey M., Latour J.-M., Bouchu D., Albrieux F., Nefedov S.E., Sorokin A.B. Nat. Chem. 2012, 4, 1024–1029.
https://doi.org/10.1038/nchem.1471
33. Colomban C., Kudrik E.V., Afanasiev P., Sorokin A.B. J. Am. Chem. Soc. 2014, 136, 11321–11330.
https://doi.org/10.1021/ja505437h
34. İşci Ü., Faponle A.S., Afanasiev P., Albrieux F., Briois V., Ahsen V., Dumoulin F., Sorokin A.B., de Visser S.P. Chem. Sci. 2015, 6, 5063–5075.
https://doi.org/10.1039/C5SC01811K
35. Alvarez L.X., Kudrik E.V., Sorokin A.B. Chem. Eur. J. 2011, 17, 9298–9301.
https://doi.org/10.1002/chem.201100650
36. Afanasiev P., Sorokin A.B. Acc. Chem. Res. 2016, 49, 583–593.
https://doi.org/10.1021/acs.accounts.5b00458
37. Kudrik E.V., Sorokin A.B. Macroheterocycles 2011, 4, 154–160.
https://doi.org/10.6060/mhc2011.3.02
38. Kudrik E.V., Sorokin A.B. J. Mol. Catal. A: Chem. 2017, 426, 499–505.
https://doi.org/10.1016/j.molcata.2016.08.013
39. Kudrik E.V., Afanasiev P., Bouchu D., Millet J.M.M., Sorokin A.B. J. Porphyrins Phthalocyanines 2008, 12, 1078–1089.
https://doi.org/10.1142/S1088424608000431
40. Safo M.K., Nesset M.J.M., Walker A., Debrunner P.G., Scheidt W.R. J. Am. Chem. Soc. 1997, 119, 9438–9448.
https://doi.org/10.1021/ja9715657
41. Hu C., Noll B.C., Schulz C.E., Scheidt W.R. Inorg. Chem. 2005, 44, 4346–4358.
https://doi.org/10.1021/ic050320p
42. Meininger D.J., Caranto J.D., Arman H.D., Tonzetich Z.J. Inorg. Chem. 2013, 52, 12468–12476.
https://doi.org/10.1021/ic401467k
43. Munro O.Q., Serth-Guzzo J.A., Turowska-Tyrk I., Mohanrao K., Shokhireva T.K., Walker F.A., Debrunner P.G., Scheidt W.R. J. Am. Chem. Soc. 1999, 121, 11144–11155.
https://doi.org/10.1021/ja991551w
44. Li J., Noll B.C., Schulz C.E., Scheidt W.R. Inorg. Chem. 2007, 46, 2286–2298.
https://doi.org/10.1021/ic061463u
45. Wagner R.W., Lawrence D.S., Lindsey J.S. Tetrahedron Lett. 1987, 28, 3069–3070.
https://doi.org/10.1016/S0040-4039(00)96287-7
46. Lindsey J.S., Wagner R.W. J. Org. Chem. 1989, 54, 828–836.
https://doi.org/10.1021/jo00265a021
47. Adler A.D., Longo F.R., Kampus F., Kim J. J. Inorg. Nucl. Chem. 1970, 32, 2443–2445.
https://doi.org/10.1016/0022-1902(70)80535-8
48. Sheldrick G., Bruker AXS Inc., Madison, WI-53719, USA. 1997.
49. Bruker SAINT: Area-Detector Integration Sofware, 2012, Madison, Wisconsin, USA, 2012.
50. SHELX-97, Program for the Refinement of Crystal Structures, University of Göttingen: Göttingen, Germany, 1997.
51. Scheidt W.R., Lee Y.J., Bartzcak T., Hatano K. Inorg. Chem. 1984, 23, 2552–2554.
https://doi.org/10.1021/ic00184a036
52. George S., Goldberg I. Cryst. Growth Des. 2006, 6, 755–762.
https://doi.org/10.1021/cg050624m
53. Khodov I.A., Nikiforov M.Yu., Alper G.A., Mamardashvili G.M., Mamardashvili N.Zh., Koifman O.I. J. Mol. Struct. 2015, 1081, 426–430.
https://doi.org/10.1016/j.molstruc.2014.10.070
54. Udal'tsov A.V., Bolshakova A.V., Vos J.G. J. Mol. Struct. 2015, 1080, 14–23.
https://doi.org/10.1016/j.molstruc.2014.09.068
55. Udal'tsov A.V., Bolshakova A.V., Vos J.G. J. Mol. Struct. 2014, 1065-1066, 170–178.
https://doi.org/10.1016/j.molstruc.2014.02.055