1. Andreev V.M. Soros. Obrazov. Zh. 1996, 7, 93-98 (in Russ.).
16. Geary E.A.M., Yellowlees L.J., Jack L.A., Oswald I.D.H., Parsons S., Hirata N., Durrant J.R., Robertson N. Inorg. Chem. 2005, 44, 242-250.
https://doi.org/10.1021/ic048799t
20. Wu G., Kong F., Zhang Y., Zhang X., Li J., Chen W., Liu W., Ding Y., Zhang C., Zhang B., Yao J., Dai S. J. Phys. Chem. C 2014, 118, 8756-8765.
https://doi.org/10.1021/jp4124265
25. Qian X., Zhu Y.-Z., Chang W.-Y., Song J., Pan B., Lu L., Gao H.-H., Zheng J.-Y. ACS Appl. Mater. Interfaces 2015, 7, 9015-9022.
https://doi.org/10.1021/am508400a
30. Warnan J., Gardner J., Le Pleux L., Petersson J., Pellegrin Y., Blart E., Hammarström L., Odobel F.
J. Phys. Chem. C 2014, 118, 103-113.
http://dx.doi.org/10.1021/jp408900x
31. Jradi F.M., Kang X., O'Neil D., Pajares G., Getmanenko Y.A., Szymanski P., Parker T.C., El-Sayed M.A., Marder S.R. Chem. Mater. 2015, 27, 2480-2487.
https://doi.org/10.1021/cm5045946
40. Jradi F.M., O'Neil D., Kang X., Wong J., Szymanski P., Parker T.C., Anderson H.L., El-Sayed M.A., Marder S.R. Chem. Mater. 2015, 27, 6305-6313.
https://doi.org/10.1021/acs.chemmater.5b02006
41. Lu J., Zhang B., Yuan H., Xu X., Cao K., Cui J., Liu S., Shen Y., Cheng Y.-B., Xu J., Wang M. J. Phys. Chem. C 2014, 118, 14739-14748.
https://doi.org/10.1021/jp5014829
42. Gasiorowski J., Pootrakulchote N., Reanprayoon C., Jaisabuy K., Vanalabhpatana P., Sariciftcia N.S., Thamyongkit P. RSC Adv. 2015, 5, 72900-72906.
https://doi.org/10.1039/C5RA10538B
47. Mathew S., Yella A., Gao P., Humphry-Baker R., Curchod B.F.E., Ashari-Astani N., Tavernelli I., Rothlisberger U., Nazeeruddin Md.K., Grätzel M. Nature Chemistry 2014, 6, 242-247.
https://doi.org/10.1038/nchem.1861
55. Özgür Ü., Alivov Ya.I., Liu C., Teke A., Reshchikov M.A., Doğan S., Avrutin V., Cho S.-J., Morkoç H. J. Appl. Phys. 2005, 98, 041301.
https://doi.org/10.1063/1.1992666
57. Shahzad N., Risplendi F., Pugliese D., Bianco S., Sacco A., Lamberti A., Gazia R., Tresso E., Cicero G. J. Phys. Chem. C 2013, 117, 22778-22783.
https://doi.org/10.1021/jp406824f
58. Niu H., Zhang S., Wang R., Guo Z., Shang X., Gan W., Qin S., Wan L., Xu J. J. Phys. Chem. C 2014, 118, 3504-3513.
https://doi.org/10.1021/jp409203w
75. Radivojevic I., Bazzan G., Burton-Pye B.P., Ithisuphalap K., Saleh R., Durstock M.F., Francesconi L.C., Drain C.M. J. Phys. Chem. C 2012, 116, 15867-15877.
https://doi.org/10.1021/jp301853d
83. Islam A., Akhtaruzzaman M., Chowdhury T.H., Qin C., Han L., Bedja I.M., Stalder R., Schanze K.S., Reynolds J.R. ACS Appl. Mater. Interfaces 2016, 8, 4616-4623.
https://doi.org/10.1021/acsami.5b11134
91. Yin X., Zhao H., Chen L., Tan W., Zhang J., Weng Y., Shuai Z., Xiao X., Zhou X., Li X., Lin Y. Surf. Interface Anal. 2007, 39, 809-816.
https://doi.org/10.1002/sia.2594
101. Wu J., Hao S., Lan Z., Lin J., Huang M., Huang Y., Li P., Yin S., Sato T. J. Am. Chem. Soc. 2008, 130, 11568-11569.
https://doi.org/10.1021/ja802158q
106. Park S.J., Yoo K., Kim J.-Y., Kim J.Y., Lee D.-K., Kim B., Kim H., Kim J.H., Cho J., Ko M.J. ACS Nano 2013, 7, 4050-4056.
https://doi.org/10.1021/nn4001269
109. Kelkar S., Pandey K., Agarkar S., Saikhedkar N., Tathavadekar M., Agarwal I., Gundloori R.V.N., Ogale S.B. ACS Sustainable Chem. Eng. 2014, 2, 2707-2714.
https://doi.org/10.1021/sc5004488
111. Nazeeruddin M.K., Péchy P., Renouard T., Zakeeruddin S.M., Humphry-Baker R., Comte P., Liska P., Cevey L., Costa E., Shklover V., Spiccia L., Deacon G.B., Bignozzi C.A. J. Am. Chem. Soc. 2001, 123, 1613-1624.
https://doi.org/10.1021/ja003299u