Сим. CoEP-II NiEP-II CuEP-II ZnEP-II Приближенное описание*) i 675(0.0) 675(0.0) 673(0.0) 673(0.0) $r(C_{\beta}^{"}-C1), def(Py)$ 61 А 687(0.0) 687(0.0) 686(0.0) 685(0.0) $r(C'_{\beta}-C_{Me}), def(Py)$ 62 А 699(0.0) 699(0.0) 695(0.0) 693(0.0) $r(C_{\beta}^{"}-C1, C_{\beta}^{'}-C_{Me}, C_{\beta}-C_{\alpha})$ 63 B_1 703(0.0) 697(0.0) 701(0.0) 711(0.0) 64 twist(m-ring), $OPB(C'_{\beta})$ А 709(12.4) 707(12.0) 708(11.6) 711(11.7) OPB(C'_{α} , C'_{β} , r(C''_{β} -C1), r(C'_{β} -C_{Me}) 65 B_2 719(21.1) 716(20.9) 717(20.5) 720(20.8) OPB(C_{α} , N, C'_{β} , r(C'_{β} - C_{Me}), r(C''_{β} -C1) 66 B_2 720(33.9) 718(34.7) 720(35.3) 722(34.7) 67 B_3 $r(C'_{\beta}-C_{Me})$, twist(Py), $r(C''_{\beta}-C1)$, r(M-N)728(0.1) 727(0.1) 726(0.2) 728(0.2) chair(m-ring), $OPB(C'_{\beta})$ 68 B₁ 731(2.5) 728(1.1) 728(0.9) 730(1.6) 69 B_3 chair(m-ring) 751(0.9) 749(0.6) 746(0.8) 748(1.0) 70 B_1 chair(m-ring), $OPB(C_{\beta}^{"})$ 748(0.0) 742(0.0) 745(0.0) 744(0.0) $OPB(C_{\beta}, C_{\alpha}'')$ 71 A 748(6.0) 746(6.3) 747(6.9) 749(7.5) chair(m-ring), $OPB(C_{\beta}^{"})$ 72 B_2 747(12.6) 746(12.0) 747(12.0) 749(14.3) $OPB(C_{\alpha}^{"}, C_{\beta}^{"})$ 73 B₃ 766(18.7) 766(17.1) 764(18.2) 763(21.0) $\phi(HCC)_{Et}$, bre(Py), OPB(C["]_B) 74 B 771(24.3) 771(22.4) 769(25.5) 768(29.5) 75 φ(HCC)_{Et}, bre(Py) B_2 76 767(0.7) 768(0.5) 765(0.4) 769(0.4) bre(Py) B_1 789(0.1) 77 789(0.1) 788(0.1) 787(0.1) B_1 φ(HCC)_{Et} 790(0.0) 790(0.0) 789(0.0) 789(0.0) $\phi(HCC)_{Et}$, r(C["]_b-C1), bre(Py) 78 А 79 811(18.7) 812(17.8) 809(16.3) 807(15.9) φ(HCC)_{Et}, bre(Py) B_2 823(0.0) 823(0.0) 823(0.0) 823(0.0) $\phi(\text{HCC})_{\text{Et}}$, r(C'_{\beta}-C_{Me}), bre(Py) 80 А 833(5.2) 834(5.0) 831(4.6) 828(3.9) $\phi(HCC)_{Et}$, bre(Py) 81 B_3 866(49.2) 864(49.2) 865(49.4) 867(49.2) $OPB(H_m), OPB(C_m)$ 82 B_1 83 866(0.0) 865(0.0) 866(0.0) 868(0.0) $OPB(H_m), OPB(C_m)$ Ba 84 B_2 869(0.2) 868(0.2) 868(0.2) 870(0.2) $OPB(H_m), OPB(C_m)$ 85 B_1 869(2.2) 869(2.3) 872(1.5) $OPB(H_m), OPB(C_m)$ 871(1.7) 931(0.1) 933(0.1) 927(0.1) 922(0.1) 86 B_1 $r(C'_{\alpha}-C'_{\beta}), r(C1C2), \phi(HCC)_{ELM}$ 942(5.2) 944(6.1) 938(1.6) 933(0.0) r(C1-C2), r(C'_{α} - C'_{β}), ϕ (HCC)_{Et,Me} 87 B_3 945(43.1) 945(40.6) 938(50.3) 933(63.3) 88 B_2 $r(C1-C2), \phi(HCC)_{Et Me}$ 956(0.0) 956(0.0) 955(0.0) 955(0.0) 89 $r(C1-C2), \phi(HCC)_{Et}$ А 975(0.0) 976(0.0) 974(0.0) 972(0.1) 90 B_1 r(C1-C2), φ(HCC)_{Et,Me} r(C1-C2), φ(HCC)_{Et,Me} 91 985(31.6) 986(32.5) 980(19.6) 977(15.1) B_2 92 993(79.4) 994(69.6) 984(54.6) 979(98.1) r(C1-C2), φ(HCC)_{Et,Me} B_3 986(27.4) 986(31.2) 983(57.9) 982(31.4) 93 $\phi(\text{HCC})_{\text{Et,Me}}$, r(C1-C2), r(C_{α}-C_{β}), r(C_{β}-C_{β}) B_3 94 1006(0.0) 1006(0.0) 1004(0.0) 1004(0.0) $\phi(\text{HCC})_{\text{Et,Me}}, r(C_{\alpha}-C_{\beta})$ А 1009(0.0) 1012(0.1) 1014(0.1) 1011(0.1) $\phi(\text{HCC})_{\text{Et.Me}}, r(C_{\alpha}^{"}-C_{\beta}^{"})$ 95 B_1 1017(24.4) 1019(21.4) 1014(30.0) 1011(35.1) $\varphi(\text{HCC})_{\text{Et,Me}}, r(C_{\alpha}^{"}-C_{\beta}^{"})$ 96 B_2 97 1025(0.0) 1027(0.0) 1019(0.0) 1014(0.0) bre(m-ring), r(C1C2) А 98 1056(2.0) 1056(2.0) 1056(2.2) 1056(2.4) B_2 $\phi(HCC)_{Me}$ 99 B_1 1056(0.1) 1056(0.1) 1056(0.1) 1056(0.1) φ(HCC)_{Me} 1056(6.2) 1056(6.3) 1056(6.3) 1056(6.4) 100 φ(HCC)_{Me} B_3 1056(0.0) 101 1056(0.0) 1056(0.0) 1056(0.0) φ(HCC)_{Me} А 102 1079(7.9) 1079(7.8) 1079(8.0) 1078(8.2) $\phi(HCC)_{Et}$, r(C1-C2) B_2 $\phi(HCC)_{Et}$, r(C1-C2) B_1 1080(1.4) 1080(1.4) 1080(1.5) 1080(1.5) 103 1081(50.4) 1081(50.0) 1080(52.1) 1080(54.9) 104 B_3 φ(HCC)_{Et}, r(C1-C2) 105 1081(0.0) 1081(0.0) 1081(0.0) 1080(0.0) $\phi(HCC)_{Et}$, r(C1-C2) А 106 1121(0.0) 1122(0.0) 1119(0.0) 1117(0.0) φ(HCC)_{Et.Me} A 1125(11.0) 1125(10.1) 1122(11.9) 1120(14.4) 107 $\phi(\text{HCC})_{\text{Et,Me}}, r(C_{\beta}^{"}-C1)$ B_2 1133(8.3) 1134(8.0) 1132(8.7) 1130(10.0) 108 $\phi(\text{HCC})_{\text{Et,Me}}, r(C'_{\beta}-C_{\text{Me}})$ B₃ 1142(0.6) 1142(0.6) 1144(0.6) 1144(0.6) $\varphi(\text{HCC})_{\text{Et,Me}}$, r(C'_{\beta}-C_{Me}), r(C'_{\beta}-C1) 109 B_1 1158(0.5) 1156(0.5) 1156(0.6) 1159(0.7) 110 $r(N-C_{\alpha}), IPB(H_m)$ B_1 1159(0.0) 1159(0.0) 1158(0.0) 1159(0.0) $\phi(\text{HCC})_{\text{Et,Me}}$, r(C["]_b-C1), r(C[']_b-C_{Me}), bre(Py) 111 А 112 B₃ 1156(2.5) 1155(1.9) 1161(0.1) 1164(0.3) $r(N-C_{\alpha})$, IPB(H_m) 113 B_1 1154(0.1) 1153(0.2) 1161(0.0) 1165(0.0) $r(N-C_{\alpha})$, IPB(H_m)

Таблица S1. Рассчитанные (B3LYP) значения частот (ω_i , см⁻¹), интенсивностей (в скобках, км/моль) и приближенное описание колебаний в диапазоне 650-1700 см⁻¹ комплексов MEP-II (конформер I).

114	B_2	1157(0.1)	1155(0.0)	1161(1.1)	1165(5.9)	$r(N-C_{\alpha}), IPB(H_m)$
115	B	1170(45.8)	1169(42.0)	1169(50.1)	1170(59.5)	$(0(\text{HCC})_{\text{Et M2}}, r(C'_{\text{g}}-C_{M2}))$
116	B B	1172(50.4)	1172(45.7)	1172(57.8)	1173(73.8)	$\varphi(HCC) = r(C''C1)$
110	D ₃	11/2(0.0)	1181(0.0)	1185(0.0)	1187(0.0)	$\psi(\Pi CC)_{Et,Me}, \Pi(C_{\beta}-CT)$
11/	A	1102(0.0)	1240(0.6)	1240(0.5)	1137(0.0)	$r(N-C_{\alpha}), r(C_{\beta}-C_{1}), r(C_{\beta}-C_{Me})$
118	B ₁	124/(0.5)	1249(0.0)	1240(0.5)	1234(0.4)	$\frac{\Gamma(C_{\alpha}-C_{\beta}), \operatorname{IPB}(H_{m})}{\Gamma(C_{\alpha}-C_{\beta}), \operatorname{IPB}(H_{m})}$
119	B ₂	1256(19.1)	1256(21.6)	1249(16.0)	1245(7.6)	$r(C_{\alpha}-C_{\beta})$, $IPB(H_m)$, $r(N-C_{\alpha})$
120	B ₃	1266(48.4)	1267(52.7)	1258(40.3)	1252(24.4)	$r(C_{\alpha}-C_{\beta}), IPB(H_m), r(N-C_{\alpha})$
121	A	1292(0.0)	1292(0.0)	1291(0.0)	1291(0.0)	$\phi(HCC)_{Et}$
122	B ₃	1294(10.6)	1294(11.2)	1293(8.8)	1293(7.8)	φ(HCC) _{Et}
123	B_1	1299(0.0)	1300(0.0)	1298(0.0)	1298(0.0)	$\varphi(\text{HCC})_{\text{Et}}, r(C_{\beta}-C_{\text{Me}})$
124	B_2	1305(28.1)	1305(29.4)	1303(22.6)	1303(17.4)	φ(HCC) _{Et}
125	B ₂	1344(0.4)	1344(0.5)	1342(0.6)	1341(0.9)	$\phi(\text{HCC})_{\text{Et}}$
126	B_1	1343(1.1)	1344(1.1)	1343(2.0)	1343(2.1)	$\phi(\text{HCC})_{\text{Et}}, \text{IPB}(\text{H}_{\text{m}})$
127	B ₃	1348(23.1)	1349(22.8)	1347(21.7)	1346(19.0)	$\phi(\text{HCC})_{\text{Et}}$
128	A	1351(0.0)	1351(0.0)	1350(0.0)	1350(0.0)	$\phi(\text{HCC})_{\text{Et}}$
129	B_1	1349(1.6)	1349(1.7)	1351(0.7)	1351(0.6)	$\phi(\text{HCC})_{\text{Et}}$, IPB(H _m), r(N-C _{α})
130	B ₃	1388(1.0)	1389(1.0)	1384(0.2)	1381(0.0)	def(Py), $r(C''_{\beta}-C1)$
131	B_2	1389(17.3)	1390(16.8)	1385(14.6)	1383(11.5)	$\phi(\text{HCC})_{\text{Et}}, r(C_{\beta}^{"}-C1)$
132	Α	1399(0.0)	1401(0.0)	1393(0.0)	1390(0.0)	$r(C_{\alpha}-C_{\beta}), r(N-C_{\alpha})$
133	B ₁	1394(1.2)	1395(1.3)	1393(1.1)	1390(0.9)	$def(Pv)$, $r(C_{B}^{"}-C1)$
134	A	1405(0.0)	1405(0.0)	1403(0.0)	1402(0.0)	$\phi(\text{HCC})_{\text{Et Me}}$, $r(C_{\alpha}-C_{\beta})$
135	B.	1414(0.7)	1414(0.5)	1413(0.4)	1412(0.2)	$(HCC)_{r}$ (PB(H)) r(N-C)) r(C'-C')
136	B ₂	1414(2.7)	1414(2.1)	1414(2.3)	1413(2.1)	$\phi(\text{HCC})_{\text{Eb}}$, $HD(\text{Hm})$, $(1, C_{\alpha})$, $1(C_{\alpha} - C_{\beta})$
130	B ₁	1416(14.3)	1416(14.2)	1416(14.6)	1416(14.7)	(HCC) _{Et}
138	B ₁	1418(0.0)	1418(0.0)	1417(0.0)	1417(0.0)	$\phi(HCC)_{Et}$
130	B.	1417(0.0)	1417(0.0)	1417(0.0)	1417(0.0)	$\phi(\text{HCC})_{\text{Et}}, \text{If } D(\text{II}_{\text{m}})$
140	Δ	1418(0.0)	1418(0.0)	1417(0.0)	1417(0.0)	(nee) _{Et}
140	R.	1476(0.0) 1426(0.3)	1476(0.0) 1426(0.3)	147(0.0) 1426(0.1)	147(0.0) 1423(0.0)	$\frac{\psi(\Pi CC)_{Et,Me}}{IPB(H_{c})}$
142	D] D	1427(7.8)	1427(8.6)	1426(6.3)	1425(0.0)	r(U(C)) = r(C'(C))
142	B ₃	1/27(19.4)	1/27(10.7)	1426(15.7)	1426(12.0)	$\phi(\text{HCC})_{\text{Me}}, I(C_{\beta}-C_{\text{Me}})$
143	B_2	142/(10.4)	1427(19.7)	1420(13.7)	1420(12.9)	$\phi(HCC)_{Me}, r(C_{\beta}-C_{Me})$
144	B_1	1430(0.8)	1431(0.9)	1429(0.8)	1428(0.8)	$\varphi(\text{HCC})_{\text{Me}}, r(C_{\beta} - C_{\text{Me}})$
145	Α	1435(0.0)	1435(0.0)	1433(0.0)	1432(0.0)	$\varphi(\text{HCC})_{\text{Me}}, r(C_{\beta} - C_{\text{Me}})$
146	A	1512(0.0)	1520(0.0)	1486(0.0)	1476(0.0)	$r(C_{\alpha}-C_m), r(N-C_{\alpha}), r(C_{\alpha}-C_{\beta}), \phi(HCC)_{Et,Me}-Co,Ni,Cu$
147	B ₃	1510(0.0)	1514(7.1)	1489(0.5)	1478(2.0)	$r(C_{\alpha}-C_{m}), r(C_{\alpha}''-C_{\beta}''), \phi(HCC)_{Et,Me}-Co,Ni,Cu$
148	B_2	1519(0.3)	1525(2.5)	1494(3.6)	1481(17.7)	$r(C_{\alpha}-C_m), r(C'_{\alpha}-C'_{\beta}), \phi(HCC)_{Et,Me}-Co,Ni,Cu$
149	B_1	1494(9.4)	1494(10.0)	1493(6.7)	1493(4.3)	$\phi(\text{HCC})_{\text{Et,Me}}$
150	B ₂	1493(0.1)	1494(0.0)	1493(2.3)	1493(0.0)	$\varphi(\text{HCC})_{\text{Et,Me}}$
151	А	1494(0.0)	1494(0.0)	1493(0.0)	1493(0.0)	φ(HCC) _{Me}
152	B ₃	1495(0.9)	1495(1.2)	1494(0.3)	1494(0.9)	$\phi(\text{HCC})_{\text{Et,Me}}$
153	B ₁	1495(21.2)	1495(21.0)	1494(23.9)	1494(26.0)	φ(HCC) _{Me}
154	B ₃	1492(3.2)	1493(3.2)	1499(3.4)	1495(5.8)	φ(HCC) _{Et,Me}
155	B ₂	1496(5.7)	1496(5.7)	1495(13.0)	1495(5.5)	φ(HCC) _{Et.Me}
156	А	1491(0.0)	1492(0.0)	1499(0.0)	1496(0.0)	φ(HCC) _{Et,Me}
157	B ₁	1502(0.0)	1502(0.0)	1502(0.0)	1502(0.0)	φ(HCC) _{Et}
158	B_2	1502(35.2)	1502(15.8)	1502(29.4)	1502(26.6)	φ(HCC) _{Et} , φ(HCC) _{Me} - Co,Ni
159	А	1502(0.0)	1502(0.0)	1502(0.0)	1502(0.0)	φ(HCC) _{Et}
160	B ₃	1502(2.6)	1502(2.7)	1502(3.0)	1502(3.3)	φ(HCC) _{Et}
161	B_1	1505(1.1)	1506(1.0)	1505(1.4)	1505(1.7)	φ(HCC) _{Et,Me}
162	B ₃	1505(8.4)	1506(9.4)	1506(9.5)	1506(9.9)	φ(HCC) _{Et,Me}
163	B_2	1501(0.5)	1503(18.4)	1509(0.0)	1507(1.2)	φ(HCC) _{Et,Me}
164	Α	1503(0.0)	1505(0.0)	1509(0.0)	1507(0.0)	φ(HCC) _{Et,Me}
165	A	1518(0.0)	1515(0.0)	1516(0.0)	1512(0.0)	$\varphi(HCC)_{Et,Me}, r(C_{\alpha}-C_m)$
166	B_2	1515(1.7)	1517(1.4)	1517(0.1)	1517(0.3)	$\varphi(HCC)_{Et}$, $r(C_{\alpha}-C_m)$ -Ni,Co
167	B_1	1517(10.2)	1518(10.2)	1517(10.3)	1517(10.1)	φ(HCC) _{Et,Me}
168	B ₃	1520(33.2)	1524(25.0)	1518(35.1)	1517(32.2)	$\phi(\text{HCC})_{\text{Et,Me}}$, r(C _{α} -C _m)-Ni,Co
169	А	1543(0.0)	1553(0.0)	1533(0.0)	1521(0.0)	$r(C_{\alpha}-C_m), \phi(HCC)_{Et,Me}-Zn$
170	B ₃	1597(11.5)	1604(13.0)	1581(6.9)	1564(2.1)	$r(C_{\alpha}-C_m)$, IPB(H _m)
171	B ₂	1597(3.6)	1604(4.3)	1581(1.4)	1565(0.0)	$r(\overline{C_{\alpha}-C_{m}}), IPB(H_{m})$
172	B ₁	1627(0.0)	1637(0.0)	1609(0.0)	1590(0.0)	$r(C_{\alpha}-C_m)$, IPB(H _m)
173	B	1611(0.1)	1617(0.1)	1605(0.0)	1594(0.1)	$r(C'_{B} - C''_{B}), r(C_{\alpha} - C_{m})$
	•	1640(0.0)	1644(0.0)	1631(0.0)	1622(0.0)	$r(C'_{0}, C''_{0})$
174	A					

175	B ₃	1647(0.5)	1653(0.2)	1636(1.2)	1624(1.7)	$r(C'_{\beta} - C''_{\beta}), r(C'_{\beta} - C_{Me})$
176	B ₂	1647(0.1)	1653(0.0)	1636(0.4)	1624(0.6)	$r(C'_{\beta}-C''_{\beta})$
177	B ₁	1687(0.0)	1698(0.0)	1672(0.0)	1653(0.0)	$r(C_{\alpha}-C_m), r(C'_{\beta}-C''_{\beta}), IPB(H_m)$

^{*)} приближенное описание колебательной моды составлено по данным расчета РПЭ. Первой указана координата с наибольшим вкладом в РПЭ; координаты с вкладом, не превышающим ~10%, не указаны. Обозначения координат: г, φ – изменения указанных в скобках длин связей или валентных углов, соответственно; def(Py) – деформация пиррольного цикла с сохранением его плоскостности; twist – скручивание цикла, указанного в скобках; IPB – движение атома или фрагмента, указанного в скобках, в плоскости макроцикла; OPB – выход атома или связи, указанных в скобках, из плоскости макроцикла; chair(m-ring) – складывание шестичленного цикла [MNC_{α}C_{$m}C_{<math>\alpha$}N] (далее обозначается как m-ring) по линиям N···N и C_{$\alpha}···C_{<math>\alpha$} в виде кресла; bre(Py), bre(m-ring) – плоская деформация, напоминающая «дыхание» пиррольного цикла или цикла m-ring.</sub></sub>

Таблица S2 . Рассчитанные (B3LYP) значения частот (ω_i , см ⁻¹), интенсивностей (в скобках,
км/моль) и приближенное описание колебаний в диапазоне 3000-3300 см ⁻¹ комплексов
МЕР-II (конформер I).

.

i	Сим.	CoEP-II	NiEP-II	CuEP-II	ZnEP-II	Описание
178	B ₃	3024(0.9)	3024(1.0)	3024(1.1)	3023(1.1)	r(C-H) _{Me}
179	B_1	3024(0.4)	3024(0.4)	3024(0.4)	3023(0.5)	r(C-H) _{Me}
180	B_2	3024(159.1)	3025(156.1)	3024(155.6)	3024(156.2)	r(C-H) _{Me}
181	Α	3024(0.0)	3025(0.0)	3024(0.0)	3024(0.0)	r(C-H) _{Me}
182	B_2	3030(13.9)	3030(13.7)	3030(15.1)	3030(15.5)	r(C-H) _{Et}
183	B_1	3030(66.5)	3030(66.6)	3030(65.7)	3030(65.4)	r(C-H) _{Et}
184	B ₃	3030(123.3)	3030(122.1)	3030(123.5)	3030(124.0)	r(C-H) _{Et}
185	Α	3030(0.0)	3030(0.0)	3030(0.0)	3030(0.0)	r(C-H) _{Et}
186	B ₃	3035(68.1)	3035(67.1)	3035(68.2)	3034(69.4)	r(C-H) _{Et}
187	B_2	3035(13.1)	3036(13.5)	3035(14.0)	3034(13.8)	r(C-H) _{Et}
188	B ₁	3035(60.5)	3036(59.4)	3035(61.1)	3034(62.4)	r(C-H) _{Et}
189	А	3035(0.0)	3036(0.0)	3035(0.0)	3034(0.0)	r(C-H) _{Et}
190	B ₁	3061(0.5)	3061(0.4)	3061(0.4)	3060(0.4)	r(C-H) _{Et}
191	B ₂	3061(44.4)	3061(43.5)	3061(43.9)	3060(45.0)	r(C-H) _{Et}
192	B ₃	3061(2.6)	3062(2.4)	3061(2.5)	3060(2.7)	r(C-H) _{Et}
193	А	3061(0.0)	3062(0.0)	3061(0.0)	3060(0.0)	r(C-H) _{Et}
194	B ₂	3067(0.8)	3067(0.8)	3067(1.1)	3066(1.4)	r(C-H) _{Me}
195	А	3067(0.0)	3067(0.0)	3067(0.0)	3066(0.0)	r(C-H) _{Me}
196	B ₃	3067(0.1)	3068(0.0)	3067(0.1)	3067(0.1)	r(C-H) _{Me}
197	B_1	3067(58.2)	3068(57.0)	3067(57.5)	3067(58.1)	r(C-H) _{Me}
198	B ₂	3094(4.7)	3095(4.7)	3095(4.6)	3094(4.8)	r(C-H) _{Et}
199	B_1	3094(18.2)	3095(17.5)	3095(18.3)	3094(18.6)	r(C-H) _{Et}
200	B ₃	3095(193.4)	3095(192.0)	3095(192.8)	3094(194.1)	r(C-H) _{Et}
201	А	3095(0.0)	3095(0.0)	3095(0.0)	3095(0.0)	r(C-H) _{Et}
202	B_1	3103(0.3)	3103(0.4)	3103(0.2)	3103(0.2)	r(C-H) _{Et}
203	B ₂	3103(113.3)	3103(113.1)	3103(111.0)	3103(109.7)	r(C-H) _{Et}
204	B ₃	3103(0.6)	3104(0.8)	3103(0.4)	3103(0.2)	r(C-H) _{Et}
205	А	3103(0.0)	3104(0.0)	3103(0.0)	3103(0.0)	r(C-H) _{Et}
206	B_1	3109(0.0)	3109(0.0)	3109(0.0)	3108(0.0)	r(C-H) _{Me}
207	B ₃	3109(95.3)	3109(93.6)	3109(95.5)	3108(97.4)	r(C-H) _{Me}
208	B ₂	3109(42.9)	3110(41.3)	3109(45.0)	3108(48.1)	r(C-H) _{Me}
209	Ā	3109(0.0)	3110(0.0)	3109(0.0)	3108(0.0)	r(C-H) _{Me}
210	B_2	3203(8.8)	3208(7.8)	3198(9.5)	3190(10.8)	$r(C_m-H_m)$
211	Ā	3203(0.0)	3208(0.0)	3198(0.0)	3190(0.0)	$r(C_m-H_m)$
212	B ₃	3209(13.4)	3214(12.1)	3204(14.2)	3195(15.7)	$r(C_m-H_m)$
213	A	3209(0.0)	3214(0.0)	3204(0.0)	3195(0.0)	$r(C_m-H_m)$

Таблица S3. Рассчитанные (B3LYP) величины частот (ω_i , см⁻¹), интенсивностей в ИКспектрах (в скобках, км/моль) и приближенное описание колебаний в диапазоне 0-650 см⁻¹ комплексов МЕР-II (конформер I).

i	Сим.	CoEP-II	NiEP-II	CuEP-II	ZnEP-II	Приближенное описание ^{*)}
1	Α	19(0.0)	16(0.0)	21(0.0)	24(0.0)	sad

3 8, b 49(1.8) 50(2.0) 44(0.9) butterffy(r) 4 B.A 4900.0 48(0.0) rot(Fa) 5 A 500.0. 51(0.0. 50(0.0) 48(0.0) rot(Fa) 7 B.J. 51(0.0. 51(0.0. 50(0.0) 70(0.0) rot(Fa) 9 B. 74(0.0) 73(0.0) 76(0.0) 77(0.0) OPB(C'pC_a), rot(P), MN) 10 A 740.00 73(0.0) 73(0.0) rot(B) rot(B) 11 B. 89(0.0) 90(0.0) 83(0.0) rot(B) rot(B) 12 A 108(0.0) 109(0.0) 105(0.0) 100(0.0) rot(Me) 13 B. 109(0.0) 112(0.0) 126(0.0) rot(Me) 14 B. 111(0.0) 114(0.0) 126(0.0) 136(0.0) rot(Me) 14 B. 114(0.0) 132(0.0) 126(0.0) rot(Me) 15 B. 114(0.0) <th132(0.0)< th=""> 126(0.</th132(0.0)<>	2	B_1	22(0.0)	10(0.0)	30(0.1)	34(0.7)	butterfly(y)
4 B, 490.00 480.00 rot(D) 6 B, 510.00 510.00 490.00 rot(D) 7 B, 511.00 510.00 510.00 500.00 rot(D) 8 B, 611.1 611.40 590.00 770.00 rot(D), rot(D), rot(D) 9 B, 740.00 730.00 770.00 rot(D), rot(D) PBC 11 B, 890.00 900.00 850.00 rot(D) rot(D) 12 A 1080.01 1090.00 1100.00 870.00 rot(D) 13 B, 1080.01 1100.01 1040.00 rot(D) rot(D) 14 B, 1110.01 1130.01 1060.01 1260.01 rot(D) rot(D) 15 B, 1100.01 1340.01 1260.01 rot(D) rot(D) rot(D) 16 B, 1330.01 1360.01 1560.01 rot(D) rot(D) rot(D) rot(D) rot(D)	3	B ₁	49(1.8)	50(2.0)	46(1.9)	44(0.9)	butterfly(x)
5 A 500.01 510.00 510.00 500.00 900.00 rot(Fa) 7 Ba 510.00 510.00 500.00 rot(Fa) rot(Fa) 9 Ba 740.00 750.00 750.00 770.00 OPBC/ ₂ /C ₃₀ /rot(Py, MN) 10 A 750.00 750.00 770.00 OPBC/2/C ₃₀ /rot(Py, MN) 11 Ba 600.01 900.00 850.00 770.00 OPBC/2/C ₃₀ /rot(Py, MN) 11 Ba 750.00 750.00 750.00 rot(Me) rot(Me) 12 A 1080.01 1090.00 1090.00 rot(Me) rot(Me) 13 Ba 1090.01 1140.00 1260.01 1020.21 rot(Me) 14 Ba 1110.01 1130.01 1260.01 1260.01 rot(Me) 15 Ba 1160.01 1360.01 1260.01 rot(Me) rot(Me) 18 A 1440.00 1390.01 1530.40 rot(Me) rot(Me) <	4	B ₃	49(0.0)	48(0.0)	49(0.0)	48(0.0)	rot(Et)
6 P_{1} 51000 51000 51000 50000 rot(Fa) 7 P_{15} 51000 51000 58000 rot(Ea) rot(m-ring, x) 8 P_{10} 61(1.1) 61(1.4) 590.0 780.0 rot(m-ring, x), OPB(E) 10 A 750.0 750.0 760.0 rot(m-ring, x), OPB(E) 11 B 870.0 730.0 rot(m-ring, x), OPB(E) rot(Me) 12 A 1080.0 1090.0 1000.0 rot(Me) rot(Me) 13 R. 1090.0 1110.0 1040.0 1000.0 rot(Me) 14 B, 1110.0 1120.0 1220.0 rot(Me) rot(Me) 15 B, 1110.0 1120.0 1220.0 1230.0 rot(Me) 16 B, 1360.0 1360.0 1360.0 scd.0PB(M, Sdd rot(Me) 17 B, 1610.0 1632.0 1550.0 rot(Me) scd.0PB(M, Sdd rot(Me)	5	A	50(0.0)	51(0.0)	49(0.0)	48(0.0)	rot(Et)
7 B _b 51000 51000 58060 rot(D), butcherHyc) 9 B _b 6101.1 6101.4 590.00 780.00 rot(D), butcherHyc) 9 B _b 740.00 750.00 750.00 770.00 rot(D), butcherHyc) 10 A 750.00 750.00 750.00 770.00 rot(D) OPB(C _{2,k}), rot(Py, MN) 11 B _b 890.00 990.00 820.00 rot(Me) rot(Me) 12 A 1080.00 1090.00 1000.00 rot(Me) 13 B _b 1090.01 1100.01 1020.02 rot(Me) 14 B _b 1110.01 1130.00 1280.01 1280.01 020.01 rot(Me) 18 A 1440.00 1390.01 1360.00 sato rot(Me) sato 18 A 1440.00 1430.00 1390.01 1530.00 rest(MN) OPB(Me) rot(Me) 19 B 1090.01 1530.00 1530.01 rest(Me) rot(Me) rot(Me) 21 B 1681.01 16	6	B_2	51(0.0)	51(0.0)	50(0.0)	49(0.0)	rot(Et)
8 9 -	7	B ₃	51(0.0)	51(0.0)	51(0.0)	50(0.0)	rot(Et), rock(m-ring, x)
9 B ₂ 740.00 750.00 770.00 OPB($c_{1}^{-}C_{30}^{-}$, rot($P_{1}^{-}N_{10}^{-}$), rot($P_{1}^{-}N_{10}^{-}$) 11 B ₁ 880.00 900.00 850.00 820.00 rot(m -ring, γ), OPB(E) 12 A 1080.00 1090.00 1020.00 990.00 rot(Me) 12 A 1080.00 1100.00 1090.00 rot(Me) 13 B, 1690.00 1110.00 1090.00 1280.00 rot(Me) 14 B, 1330.00 1360.00 1280.00 1280.00 rot(Me) rot(Me) 18 A 1440.00 1320.00 1360.00 1530.00 sci(NNN) 18 A 1440.00 1390.00 1570.00 1570.00 rot(Me , D_1 , MeN) 20 A 1610.00 1570.00 1570.00 rot(Me , D_1 , MeN) 21 B, 1681.01 1890.02 1810.00 1810.00 rot(Me , D_1 , MeN) 22 B, 2013.2 204.01 1570.00 2180.00 2100.00	8	B_1	61(1.1)	61(1.4)	59(0.9)	58(0.6)	rot(Et), butterfly(x)
10 A 750.01 750.00 750.00 850.00 980.00 980.00 980.00 980.00 980.00 980.00 980.00 980.00 980.00 760.00	9	B_2	74(0.0)	73(0.0)	76(0.0)	77(0.0)	$OPB(C'_{B}-C_{Me})$, rot(Py, MN)
11 Bs. 890.00 990.00 850.00 850.00 990.00 rot(Me) 13 B. 1090.00 1110.01 1104.00 1004.00 990.00 rot(Me) 14 B. 1110.01 1130.01 1060.01 1010.02 rot(Me) 15 B. 1110.01 1130.01 1050.06 1010.02 rot(Me) 16 B. 1330.00 1340.00 128(0.00 1360.00 1360.00 1360.00 18 A 1440.00 1430.01 1390.00 1537.00 1580.00 sci(NNN, C_C, C_A, N, av N) 18 A 1440.00 1457.00 1537.00 1580.00 sci(NNN, D 21 B. 651.02 1651.10 1651.10 1671.10 PBM.E, E, rot(ME, E, I, rM-N) 22 B. 168(1.0) 1877.83 1877.55 ruf, OPB(A, E, I, rM-N) 23 B. 2070.21 2060.21 2040.00 2040.00 rot(Me in E1) 24 B. 188(1.0) 1810.00 1810.00 rot(Me in E1) 25 B.	10	А	75(0.0)	75(0.0)	76(0.0)	77(0.0)	rot(m-ring, x, y), OPB(Et)
12 A 1080,00 1090,00 1000,00 1000,00 rot(Me) 14 B, 1110,05 1120,05 1050,00 1010,08 rot(Me) 15 B, 1110,01 11340,00 1280,00 1230,00 rot(Me) 16 B, 1330,00 1340,00 1280,00 1230,00 rot(Me) 17 B, 1360,00 1360,00 1360,00 sad, OPB(Me,E) 18 A 1440,00 1430,00 1320,00 sad,00 sad,07,00,00 19 B, 1900,00 1870,00 1700,04 1533,34 rt(NN),0PB(M-Cu, Zn 20 A 1610,00 1632(0,00 153(0,00 sad(NN) 0 21 B, 1651,10 1631,1 1631,1 1631,1 1631,1 1631,1 22 B, 1810,10 1880,02 1811,00,0 1811,00,0 1811,00,0 1811,00,0 23 B, 2210,20 2040,0 2140,00 rot(Me in E),	11	B_2	89(0.0)	90(0.0)	85(0.0)	82(0.0)	rot(m-ring, y), OPB(Et)
13 B ₃ 199(0.0) 114(0.0) 100(0.0) rot(Me) 14 B ₄ 111(0.5) 112(0.5) 105(0.6) 101(0.8) rot(Me) 15 B ₅ 111(0.5) 112(0.5) 105(0.6) 101(0.8) rot(Me) 16 B ₅ 136(0.0) 134(0.0) 128(0.1) 123(0.1) 126(1.9) OPB(M) fold (MNC _c 'C _a C', N, av N) 18 A 144(0.0) 143(0.0) 136(0.0) 136(0.0) sad(0.0) Sad(0.0) <t< td=""><td>12</td><td>A</td><td>108(0.0)</td><td>109(0.0)</td><td>103(0.0)</td><td>99(0.0)</td><td>rot(Me)</td></t<>	12	A	108(0.0)	109(0.0)	103(0.0)	99(0.0)	rot(Me)
14 B. 111(0.5) 112(0.5) 105(0.6) 101(0.8) rot(Me) 15 B. 1130(0.0) 134(0.0) 128(0.0) 123(0.0) rot(Me) 16 B. 133(0.0) 134(0.0) 132(0.1) 122(0.1) OPB(M, E) 17 B. 134(0.0) 132(0.0) 132(0.0) rot(Me) 18 A 144(0.0) 143(0.0) 132(0.0) rot(Me) 19 B. 169(0.0) 157(0.0) 155(0.0) sci(NMN) 21 B. 165(1.2) 165(1.1) 163(1.2) 161(1.1) PB(Me, E), rot(Me, E), rot(M, E), rot(M-S) 23 B. 201(3.3) 204(1.6) 153(1.4) 163(1.0) 116(0.0) rot(Me, E), rot(M-E) 24 B. 181(0.1) 180(0.2) 181(0.0) rot(Me, E), rot(M-E) rot(M-ring, rot(M-R)) 25 B. 221(0.2) 214(0.0) 214(0.0) rot(M-R) rot(M-R) 26 B. 212(0.2) 214(0.0) 214(0.0) <t< td=""><td>13</td><td>B₃</td><td>109(0.0)</td><td>111(0.0)</td><td>104(0.0)</td><td>100(0.0)</td><td>rot(Me)</td></t<>	13	B ₃	109(0.0)	111(0.0)	104(0.0)	100(0.0)	rot(Me)
15 B ₂ 111(0.1) 112(0.1) 102(0.2) rct(Me) 16 B ₁ 133(0.0) 133(0.0) 132(0.1) 122(1.9) OPB(M), fold (MNC'_a C_a, C_a, N, ax NN) 17 B ₁ 133(0.0) 133(0.1) 132(0.1) 126(1.9) OPB(M), fold (MNC'_a C_a, C_a, N, ax NN) 18 A 144(0.0) 143(0.0) 130(0.0) 136(0.0) sad, OPB(M-E_1) 20 A 161(0.0) 163(1.2) 165(1.1) 165(14	B ₁	111(0.5)	112(0.5)	105(0.6)	101(0.8)	rot(Me)
16 B ₃ 133(0.0) 134(0.0) 123(0.0) rot(m-ring, x), OPB(Me) 17 B ₄ 136(0.0) 135(0.1) 132(2.0.1) 125(1.9) OPB(M), Iold (MNC, 'C, C, '', a NN) 18 A 144(0.0) 143(0.0) 139(0.0) 136(0.0) sad, OPB(Me, E), 19 B ₁ 190(0.0) 187(0.0) 153(3.4) r(MN), OPB(MH)-Cu, Zn 20 A 161(0.0) 165(1.2) 165(1.1) 163(1.2) 161(1.1) IPB(Me, E), rot(Me, E), r(M-N) 21 B ₂ 168(1.6) 169(1.6) 163(1.4) 162(1.0) IPB(Me, E), rot(Me, E), rot(Me, E), r(M-N) 23 B ₁ 201(3.3) 204(1.6) 187(4.8) 173(5.5) rd(OPB(M) 24 B ₂ 123(0.2) 204(0.0) 214(0.0) 181(0.0) rot(Me in E) 25 B ₁ 207(0.2) 204(0.0) 214(0.0) rot(Me in E) 173(1.5) 28 A 215(0.0) 214(0.0) 214(0.0) rot(Me in E) 173(1.5) 29 B ₂ 224(0.0) 223(0.0) 224(0.0) 236(0.1) rot(Me in	15	B ₂	111(0.1)	113(0.1)	106(0.1)	102(0.2)	rot(Me)
17 B ₁ 136(0.0) 136(0.1) 122(1.9) OPB(M), fold (MNC, C _n , C _n , N, ar NN) 18 A 144(0.0) 143(0.0) 136(0.0) 136(0.0) case 20 A 161(0.0) 162(0.0) 157(0.0) 153(0.0) case (MN), OPB(M)-Cu, Zn 20 A 161(0.0) 162(0.0) 157(0.0) 155(0.0) sci(NNN) 21 B ₂ 165(1.2) 165(1.2) 165(1.2) 165(1.2) 167(1.4) 177(2.4) 22 B ₂ 105(1.2) 165(1.2) 167(1.4) 177(2.5) rmf, OPB(M) 23 B ₁ 201(3.3) 204(1.6) 187(1.48) 177(5.5) rmf, OPB(M) 24 B ₃ 181(0.1) 180(0.2) 204(0.0) rot(Me in E.0) case 25 B ₁ 201(0.2) 209(0.0) 205(0.0) rot(Me in E.0) case 26 B ₂ 212(0.2) 212(0.2) 212(0.0) 214(0.0) rot(Me in E.0) case 27 A 222(0.0) 224(0.0) 224(0.0) rot(Me in E.0) case	16	B ₃	133(0.0)	134(0.0)	128(0.0)	123(0.0)	rot(m-ring, <i>x</i>), OPB(Me)
18 A 144(0.0) 1430.0) 129(0.0) 136(0.0) r(MN), OPB(M)-Cu, Zn 20 A 161(0.0) 162(0.0) 157(0.0) 155(0.0) sci(NMN) 21 B ₂ 168(1.6) 165(1.1) 163(1.2) 161(1.1) IPB(Me, E), rot(Me, E), r(M-N) 23 B ₁ 168(1.6) 165(1.4) 162(1.0) IPB(Me, E), rot(Me, E), rot(E), rot(E)	17	B_1	136(0.0)	136(0.1)	132(0.1)	126(1.9)	OPB(M), fold (MNC' _{α} C _m C' _{α} N, ax NN)
19 B ₁ 190(0.0) 187(0.0) 157(0.0) 155(0.0) 21 B ₃ 165(1.2) 165(1.1) 163(1.2) 161(1.1) IPB(Mc, E), rot(Mc, E), r(M-N) 21 B ₃ 165(1.2) 165(1.1) 163(1.2) 161(1.1) IPB(Mc, E), rot(Mc, E), r(M-N) 22 B ₁ 201(3.3) 204(1.6) 187(1.48) 173(5.5) rut, OPB(M) 24 B ₃ 181(0.1) 1800.2) 181(0.0) twis(m-ring, y) 25 B ₁ 207(0.2) 206(0.2) 204(0.0) 204(0.0) rot(Mc in E) 26 B ₂ 212(0.2) 212(0.2) 213(0.0) 214(0.0) rot(Mc in E), rot(M-ring, y) 27 A 225(0.0) 214(0.0) 214(0.0) rot(Mc in E), rot(M-ring, y) 28 A 212(0.2) 224(0.0) 244(0.0) rot(Mc in E), rot(M-ring, y) 31 B ₂ 296(0.1) 295(0.1) 276(0.6) 238(0.6) 610(m-ring, ar, N), OPB(M) 33 B ₃ 325(0.2) 244(0.0)	18	А	144(0.0)	143(0.0)	139(0.0)	136(0.0)	sad, OPB(Me,Et)
20 A 161(0.0) 162(0.0) 157(0.0) 155(0.0) sci(NMN) 22 B2 168(1.6) 169(1.1) 163(1.2) 161(1.1) IPB(Me, ED, rot(Me, ED, r(M-N)) 23 B1 201(3.3) 204(1.6) 187(4.8) 173(5.5) ruf, OrDB(M) 24 B3 181(0.1) 181(0.0) 181(0.0) 181(0.0) ruf ruf<	19	B ₁	190(0.0)	187(0.0)	170(0.4)	153(3.4)	r(MN), OPB(M)-Cu, Zn
11 B ₃ 165(1.2) 165(1.1) 165(1.4) 162(1.0) IPB(Me, E), rut(Me, E), rut(20	Α	161(0.0)	162(0.0)	157(0.0)	155(0.0)	sci(NMN)
22 B2 168(1.6) 169(1.6) 165(1.4) 162(1.0) IPB(Me, ED, rutMe, ED, rutM-N) 24 B3 181(0.1) 180(0.2) 181(0.0) 181(0.0) rut, OPB(M) 24 B3 181(0.1) 180(0.2) 204(0.0) 204(0.0) rut, OPB(M) 25 B1 207(0.2) 206(0.2) 204(0.0) rut, N rut, OPB(M) 26 B2 212(0.2) 212(0.2) 204(0.0) 214(0.0) rut, N rut, N 27 A 225(0.0) 224(0.0) 214(0.0) rut, N rut, N rut, N 28 A 215(0.0) 214(0.0) 214(0.0) rut, N rut, N rut, N 30 B2 224(0.0) 223(0.3) 215(0.1) rot, M(Me) rut, N PR(Me) 32 B1 291(0.0) 224(0.0) 246(0.0) rut, N PR(Me) 33 B2 257(0.0) 254(0.0) 260(0.0) OPB(C_m), rut, N, PR(Me) 34 A	21	B ₃	165(1.2)	165(1.1)	163(1.2)	161(1.1)	IPB(Me, Et), rot(Me,Et), r(M-N)
23 B ₁ 201(3.3) 204(1.6) 187(4.8) 173(5.5) ruf(OPB(M) 25 B ₁ 1810(0.1) 1800(2.1) 1810(0.0) 1wis(m-ring) 26 B ₂ 212(0.2) 212(0.2) 206(0.0) 205(0.0) rot(Me in Et) 26 B ₂ 212(0.0) 213(0.0) 214(0.0) rot(Me in Et) 27 A 225(0.0) 224(0.0) 214(0.0) rot(Me in Et), rot(Me in Et) 28 A 215(0.0) 214(0.0) 214(0.0) rot(Me in Et), ro	22	B ₂	168(1.6)	169(1.6)	165(1.4)	162(1.0)	IPB(Me, Et), rot(Me,Et), r(M-N)
24 B ₃ 181(0.1) 180(0.2) 181(0.0) twist(m-ring) 25 B ₄ 2070(0.2) 206(0.2) 204(0.0) 205(0.0) rot(Me in Et) 26 B ₂ 212(0.2) 212(0.0) 224(0.0) 213(0.0) 210(0.0) rot(Me in Et) 27 A 225(0.0) 224(0.0) 214(0.0) 114(0.0) rot(Me in Et) 28 A 215(0.0) 216(0.0) 215(0.0) rot(Me in Et), rot(m-ring, x, y) 30 B ₂ 224(0.0) 225(0.0) 218(0.0) 215(0.0) rot(Me in Et), rot(m-ring, y) 31 B ₃ 226(0.1) 295(0.1) 267(1.5) 236(4.3) r(M-N), PB(Me) 32 B ₃ 291(0.0) 292(0.2) 246(0.0) 266(0.0) cs(NNN, Sad 34 A 257(0.0) 254(0.0) 266(0.0) 256(0.0) OPB(Mc), rot(m-ring, x, N) 35 B ₃ 257(0.0) 258(0.1) 278(0.2) 269(0.2) fold(m-ring, ar, NN), OPB(Mc) 36 B ₃ 285(0.0) 282(0.0) 270(1.1) 273(0.0) rot(Me in Et), rot(m-ring, x)	23	B ₁	201(3.3)	204(1.6)	187(4.8)	173(5.5)	ruf, OPB(M)
25 B ₁ 207(0.2) 204(0.0) rot(Me in Ei) 26 B ₂ 212(0.2) 209(0.0) 2205(0.0) rot(m-ring, x, y) 27 A 225(0.0) 224(0.0) 213(0.0) 210(0.0) rot(Me in Ei) 28 A 215(0.0) 214(0.0) 214(0.0) rot(Me in Ei) rot(Me in Ei) 30 B ₂ 222(0.7) 222(0.7) 2210(7.1) 215(0.1) rot(Me in Ei), rot(m-ring, y) 31 B ₂ 224(0.0) 225(0.0) 218(0.0) 215(0.1) rot(Me in E), rot(m-ring, y) 32 B ₁ 291(0.0) 295(0.1) 267(1.5) 236(4.3) r(M-N), PB(Me) 33 B ₃ 325(0.2) 324(0.3) 279(0.9) 244(4.9) r(M-N) 34 A 257(0.0) 254(0.0) 266(0.0) 026(2.2) fold(m-ring, ar, N), OPB(Me) 35 B ₂ 257(0.0) 254(0.0) 269(0.2) fold(m-ring, ar, N), OPB(Me), OPB(Me) 36 B ₁ 256(0.4) 258(0.1) 278(0.0) 270(0.0) rot(Me in E1)-rot(Me in E1)-rot(Me in E1) 37	24	B ₃	181(0.1)	180(0.2)	181(0.0)	181(0.0)	twist(m-ring)
26 B ₂ 212(0.2) 212(0.2) 209(0.0) 205(0.0) rot(m-ring, y) 27 A 225(0.0) 224(0.0) 214(0.0) rot(Me in Et) 28 A 215(0.0) 215(0.0) 214(0.0) rot(Me in Et) 29 B ₁ 222(0.7) 222(0.7) 220(0.3) 215(0.1) rot(Me in Et), rot(m-ring, y) 31 B ₂ 224(0.1) 225(0.0) 225(0.0) 225(0.0) rot(Me in Et), rot(m-ring, x) 32 B ₁ 29(0.0) 225(0.0) 227(0.0) 244(4.9) r(M-N) 33 B ₃ 325(0.2) 224(0.0) 246(0.0) sci(NMN), sad 35 B ₂ 257(0.0) 257(0.0) 248(0.0) 246(0.0) sci(NMN), sad 36 B ₁ 256(0.4) 258(0.1) 278(0.2) 269(0.2) fold(m-ring, ax N), OPB(Me), OPB(M) 37 A 274(0.0) 270(1.1) 273(0.0) rot(m-ring, x), OPB(Cm), OPB(Cm), OPB(Me) 38 B ₃ 288(0.2) 288(0.3) 286(0.1) PBCam, OPB(Cm), OPB(Cm), OPB(Cm) 39 B ₃ 288(0.2)<	25	B ₁	207(0.2)	206(0.2)	204(0.0)	204(0.0)	rot(Me in Et)
21 A 225(0.0) 224(0.0) 214(0.0) 214(0.0) rot(m-ring, xy) 28 A 215(0.0) 215(0.0) 214(0.0) rot(Me in Et) rot(Me in Et), rot(M-ring, y) 30 B ₂ 224(0.0) 225(0.1) 226(0.1) rot(Me in Et), rot(M-ring, y) 31 B ₂ 224(0.0) 225(0.1) 226(1.5) 236(4.3) rf(M-N), PB(Me) 32 B ₁ 291(0.0) 292(0.2) 246(0.6) 238(0.6) fold(m-ring, ax NN), OPB(M) 33 B ₃ 252(0.2) 324(0.0) 266(0.0) sci(NMN), sad 34 A 257(0.0) 254(0.0) 266(0.0) csi(NMN), sad 35 B ₂ 257(0.0) 254(0.0) 266(0.0) rot(m-ring, x), OPB(Me) 36 B ₁ 256(0.4) 258(0.1) 278(0.0) 270(0.0) rot(m-ring, x), OPB(Me) 37 A 274(0.0) 274(0.1) 273(0.0) rot(m-ring, x), OPB(Me) OPB(m) 38 B ₃ 283(0.0) 282(0.0) 286(0.1) PB(Me, Et), rot(m-ring, x), OPB(Me) OPB(Me) 39 <t< td=""><td>26</td><td>B₂</td><td>212(0.2)</td><td>212(0.2)</td><td>209(0.0)</td><td>205(0.0)</td><td>rot(m-ring, y)</td></t<>	26	B ₂	212(0.2)	212(0.2)	209(0.0)	205(0.0)	rot(m-ring, y)
28 A 215(0.0) 214(0.0) 214(0.0) rot(Me in E) 30 B2 2220(7) 220(7) 220(7) 220(7) rot(Me in E) rot(Me in E) 31 B2 224(0.0) 225(0.0) 218(0.0) 215(0.0) rot(Me in E) rot(Me in E) 32 B1 291(0.0) 2246(0.6) 238(0.6) fold(m-ring, ax NN), OPB(Me) 33 B3 225(0.2) 224(0.3) 274(0.9) 244(4.9) r(M-N) 34 A 257(0.0) 254(0.0) 260(0.0) 265(0.0) OPB(C_n), rot(m-ring, ax NN), OPB(Me) 35 B2 257(0.0) 254(0.0) 260(0.0) 269(0.2) fold(m-ring, ax NN), OPB(Me) 36 B 256(0.4) 258(0.1) 278(0.2) 269(0.2) fold(m-ring, ax, NP), OPB(Me) 37 A 274(0.0) 270(0.0) 270(0.0) rot(Me in E1), rot(Me in E1) 38 B3 288(0.2) 286(0.0) 286(0.1) IPB(Me,E1), rot(Me in E1), PB(Me,E1) 40 B2 <t< td=""><td>27</td><td>A</td><td>225(0.0)</td><td>224(0.0)</td><td>213(0.0)</td><td>210(0.0)</td><td>rot(m-ring, x, y)</td></t<>	27	A	225(0.0)	224(0.0)	213(0.0)	210(0.0)	rot(m-ring, x, y)
29 B ₁ 224(0.0) 225(0.0) 215(0.0) rot(Me in Ef), rot(m-ring, y) 31 B ₂ 226(0.1) 225(0.1) 226(1.5) 236(4.3) r(M-N), PB(Me) 32 B, 291(0.0) 292(0.2) 246(0.6) 238(0.6) fold(m-ring, ax NN), OPB(M) 34 A 257(0.0) 257(0.0) 248(0.0) 244(4.9) r(M-N) 34 A 257(0.0) 257(0.0) 248(0.0) 244(0.9) r(M-N) 36 B ₂ 257(0.0) 254(0.0) 269(0.2) fold(m-ring, ax NN), OPB(Me) 36 B ₂ 256(0.4) 258(0.1) 278(0.2) 269(0.2) fold(m-ring, ax, NN), OPB(Me) 37 A 274(0.0) 274(0.0) 270(0.0) 270(0.0) rot(Me in EI), rot(m-ring, x) 38 B ₃ 288(0.2) 288(0.3) 286(0.1) IPB(Me,ED), rot(Me in EI) 40 B ₂ 325(0.0) 326(0.0) 303(0.2) 299(0.3) fold(MNC ^a _a , C ^a _a , N, ax, NN)-NiCo 41 B ₃ 345(0.	28	A	215(0.0)	215(0.0)	214(0.0)	214(0.0)	$\frac{1}{100} \frac{1}{100} \frac{1}$
30 B ₂ 224(0.0) 223(0.0) 213(0.0) 213(0.0) 213(0.0) 200(Me in ED, 100(Me in 100(ME in 100(ME in	29	B ₃	222(0.7)	222(0.7)	220(0.3)	215(0.1)	rot(Me in Et), r(M-N)
1 B2 290(0.1) 292(0.1) 294(0.5) 238(0.5) 1(M+N), H2(M+N) 33 B3 325(0.2) 324(0.3) 279(0.9) 244(4.9) r(M+N) 34 A 257(0.0) 254(0.0) 246(0.6) sci(NM), sad 35 B2 257(0.0) 254(0.0) 266(0.0) OPB(C_m), rot(m-ring, x), OPB(Me) 36 B1 256(0.4) 258(0.1) 278(0.2) 269(0.2) fold(m-ring, ax NN), OPB(Me) 37 A 274(0.0) 270(1.1) 273(0.0) rot(Me in El), rot(m-ring, x, y) 38 B3 288(0.2) 288(0.0) 286(0.0) 286(0.1) rot(Me in El), cot(Me in El) 40 B2 325(0.0) 326(0.0) 303(0.2) 299(0.3) rot(Me in El), cot(Me in El), PR(El), 41 B1 317(0.1) 318(0.1) 313(0.0) rot(Me in El), Rey(El, Me) 42 B1 345(0.6) 359(0.3) 329(0.2) fold(MNC_a^m C_m^m, ax NN), OPB(Me, El) 44 A 344(0.0) 343(0.0) 338(0.0) rot(Py, C_aC_a) 45 B3 346(0.5)	21	D2 D	224(0.0) 206(0.1)	223(0.0) 205(0.1)	218(0.0) 267(1.5)	213(0.0) 226(4.2)	$\frac{100(\text{Me III Et}), 100(\text{III-IIIIg}, y)}{r(M, N), IDP(M_0)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	D2 B	290(0.1) 291(0.0)	293(0.1) 292(0.2)	207(1.3) 246(0.6)	230(4.5) 238(0.6)	fold(m ring or NN) OPB(M)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	32	B.	325(0.2)	324(0.3)	279(0.9)	238(0.0) 244(4.9)	r(M-N)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34	Δ	257(0.2)	257(0.0)	279(0.9) 248(0.0)	244(4.9) 246(0.0)	sci(NMN) sad
B_2 B_2 $E_2(0.6)$	35	Ba	257(0.0)	257(0.0)	240(0.0) 260(0.0)	240(0.0) 265(0.0)	$OPB(C_{w})$ rot(m-ring v) $OPB(Me)$
37 A 27(0.0) 27(0.0) 27(0.0) 27(0.0) rot(Me in El), rot(Pl), rot(Re), rot(Pl), rot(Re), rot(Pl), rot(Re), rot(Pl), rot(Re), rot(Pl), ro	36	B_1	257(0.0) 256(0.4)	258(0.1)	278(0.2)	269(0.0)	fold(m-ring ax NN) OPB(Me) OPB(M)
38 B3 283(0.0) 282(0.0) 270(1.1) 273(0.0) rot(m-ring, x), OPB(C_m), OPB(Me) 39 B3 288(0.2) 288(0.3) 286(0.0) 286(0.1) PB(Me,Et), rot(Me in Et) 40 B2 325(0.0) 326(0.0) 303(0.2) 299(0.3) rot(Me in Et)-Cu, Zn, OPB(Me), IPB(Et), fold(MNC _a ⁿ Cm _a ⁿ , ax NN)-Ni,Co 41 B1 317(0.1) 318(0.1) 315(0.1) 313(0.0) rot(Me in Et), IPB(Et, Me) 42 B1 345(10.6) 350(8.2) 329(7.1) 327(6.0) bath 43 B2 339(0.6) 337(0.6) 329(0.3) 329(0.2) fold(MNC _a ⁿ Cm _a ⁿ , ax NN), OPB(Me, Et) 44 A 344(0.0) 343(0.0) 338(0.0) 339(0.0) rot(Py, C _a C _a) 45 B3 346(0.5) 345(0.6) 345(0.3) 348(0.1) r(M-N), IPB (ske) 44 A 345(0.0) 362(0.0) 366(0.0) twist(m-ring, y), tot(m-ring, x) 47 B2 393(0.0) 391(0.1) 390(0.0) twist(m-ring, y), rot(m-ring	37	A	274(0.0)	274(0.0)	270(0.0)	270(0.0)	rot(Me in Et), rot(m-ring, x, y)
39 B_3 288(0.2) 288(0.3) 286(0.0) 286(0.1) IPB(Me,Et), rot(Me in Et) 40 B_2 325(0.0) 326(0.0) 303(0.2) 299(0.3) rot(Me in Et)-Cu, Zn, OPB(Me), IPB(Et), fold(MNC_a^r C_m C_a^r N, ax NN)-Ni, Co 41 B_1 317(0.1) 318(0.1) 315(0.1) 313(0.0) rot(Me in Et), IPB(Et, Me) 42 B_1 345(10.6) 350(8.2) 329(7.1) 327(6.0) bath 43 B_2 339(0.6) 337(0.6) 329(0.3) 329(0.2) fold(MNC_a^r C_m C_a^r N, ax NN), OPB(Me, Et) 44 A 344(0.0) 343(0.0) 338(0.0) 339(0.0) rot(Py, $C_a C_a)$ 45 B_3 346(0.5) 345(0.6) 345(0.3) 348(0.1) r(M-N), IPB (ske) 46 A 365(0.0) 362(0.0) 366(0.0) twist(m-ring, y), rot(m-ring, x) 47 B_2 393(0.0) 391(0.1) 390(0.0) 393(0.0) twist(m-ring, y), rot(m-ring, x) 48 B_3 407(0.7) 406(0.6) 402(1.0) 401(1.3) twist(m-ring, x), chair(y), $\phi(C_B^rCL2)$ 50 A	38	B ₃	283(0.0)	282(0.0)	270(1.1)	273(0.0)	$rot(m-ring, x), OPB(C_m), OPB(Me)$
40 B_2 $325(0.0)$ $326(0.0)$ $303(0.2)$ $299(0.3)$ rot(Me in Et)-Cu, Zn, OPB(Me), IPB(Et), fold(MNC ^a _a C _m C ^a _a N, ax NN)-Ni, Co41 B_1 $317(0.1)$ $318(0.1)$ $315(0.1)$ $313(0.0)$ rot(Me in Et), IPB(Et, Me)42 B_1 $345(10.6)$ $350(8.2)$ $329(7.1)$ $327(6.0)$ bath43 B_2 $339(0.6)$ $337(0.6)$ $329(0.3)$ $329(0.2)$ fold(MNC ^a _a C _m C ^a _a N, ax NN), OPB(Me, Et)44A $344(0.0)$ $433(0.0)$ $338(0.0)$ $339(0.0)$ rot(Py, C _a C _a)45 B_3 $346(0.5)$ $345(0.6)$ $345(0.3)$ $348(0.1)$ r(M-N), IPB (ske)46A $365(0.0)$ $362(0.0)$ $366(0.0)$ twist(m-ring, y), rot(m-ring, x)47 B_2 $393(0.0)$ $391(0.1)$ $390(0.0)$ $393(0.0)$ twist(m-ring, y), bath(x)48 B_3 $407(0.7)$ $406(0.6)$ $402(1.0)$ $401(1.3)$ twist(m-ring, x), chair(y), $\varphi(C^{e}_{p}C1C2)$ 49 B_1 $411(3.9)$ $411(3.8)$ $408(5.5)$ $409(6.2)$ $\gamma(C_m-C_a-C_B-C_B)$ 50A $455(0.0)$ $455(0.0)$ $457(0.0)$ twist(m-ring, x), rot(m-ring, y)51 B_2 $511(1.4)$ $512(1.2)$ $504(2.7)$ $501(4.8)$ 52 B_3 $503(1.3)$ $500(1.1)$ $502(3.2)$ $502(6.5)$ twist(m-ring), fold(m-ring, ax C'_a C'_a)53A $520(0.0)$ $518(0.0)$ $518(0.0)$ twist(m-ring), def(C_B-C1-C2), IPB(Me,Et)54	39	B ₃	288(0.2)	288(0.3)	286(0.0)	286(0.1)	IPB(Me,Et), rot(Me in Et)
40B2 $325(0.0)$ $326(0.0)$ $303(0.2)$ $299(0.3)$ fold(MNC _a C _m C _a N, ax NN)-Ni,Co41B1 $317(0.1)$ $318(0.1)$ $315(0.1)$ $313(0.0)$ rot(Me in Et), IPB(Et, Me)42B1 $345(10.6)$ $350(8.2)$ $329(0.3)$ $329(0.2)$ fold(MNC _a C _m C _a N, ax NN), OPB(Me, Et)43B2 $339(0.6)$ $337(0.6)$ $329(0.3)$ $329(0.2)$ fold(MNC _a C _m C _a N, ax NN), OPB(Me, Et)44A $344(0.0)$ $343(0.0)$ $338(0.0)$ $339(0.0)$ rot(Py, C _a C _a)45B3 $346(0.5)$ $345(0.6)$ $345(0.3)$ $348(0.1)$ r(M-N), IPB (ske)46A $365(0.0)$ $362(0.0)$ $366(0.0)$ twist(m-ring, y), rot(m-ring, x)47B2 $393(0.0)$ $391(0.1)$ $390(0.0)$ $393(0.0)$ twist(m-ring, y), bath(x)48B3 $407(0.7)$ $406(0.6)$ $402(1.0)$ $401(1.3)$ twist(m-ring, x), chair(y), $q(C_{\beta}^{c}C1C2)$ 49B1 $411(3.9)$ $411(3.8)$ $408(5.5)$ $409(6.2)$ $\gamma(C_m^{-}C_a^{-}C_{\beta}-C_{\beta})$ 50A $455(0.0)$ $455(0.0)$ $457(0.0)$ twist(m-ring, x), rot(m-ring, x)51B2 $511(1.4)$ $512(1.2)$ $504(2.7)$ $501(4.8)$ rot(Py) IPB52B3 $503(1.3)$ $500(1.1)$ $502(3.2)$ $524(4.6)$ twist(m-ring), def(C_{p}-C1-C2), IPB(Me,Et)54B3 $529(4.4)$ $529(4.2)$ $524(4.6)$ twist(m-ring), def(C_p-C1-C2), IPB(Me,Et)54B3	40	P	225(0.0)	22((0,0)	202(0.2)	200(0.2)	rot(Me in Et)-Cu, Zn, OPB(Me), IPB(Et),
41 B_1 317(0.1)318(0.1)315(0.1)313(0.0)rot(Me in Et), IPB(Et, Me)42 B_1 345(10.6)350(8.2)329(7.1)327(6.0)bath43 B_2 339(0.6)337(0.6)329(0.3)329(0.2)fold(MNC_a " C_m C_a " N, ax NN), OPB(Me, Et)44A344(0.0)343(0.0)338(0.0)339(0.0)rot(Py, $C_a C_a)$ 45 B_3 346(0.5)345(0.6)345(0.3)348(0.1)r(M-N), IPB (ske)46A365(0.0)362(0.0)366(0.0)twist(m-ring, y), tot(m-ring, x)47 B_2 393(0.0)391(0.1)390(0.0)twist(m-ring, x), bath(x)48 B_3 407(0.7)406(0.6)402(1.0)401(1.3)twist(m-ring, x), chair(y), $\varphi(C_B^{C}C1C2)$ 49 B_1 411(3.9)411(3.8)408(5.5)409(6.2) $\gamma(C_m-C_a - C_b - C_b)$ 50A455(0.0)455(0.0)457(0.0)twist(m-ring, x), rot(m-ring, y)51 B_2 511(1.4)512(1.2)504(2.7)501(4.8)52 B_3 503(1.3)500(1.1)502(3.2)502(6.5)twist(m-ring), fold(m-ring, ax $C_a' C_a'$)53A520(0.0)518(0.0)518(0.0)518(0.0)twist(m-ring), def(C_B-C1-C2), IPB(Me,Et)54 B_3 529(4.4)529(4.2)524(4.6)twist(m-ring), def(C_B-C1-C2), IPB(Me,Et)54 B_3 529(4.1)559(1.4)560(1.5)fold(m-ring, ax $C_a' C_a'$)55 B_1 566(0.0)558(0.0) <td>40</td> <td>B_2</td> <td>325(0.0)</td> <td>326(0.0)</td> <td>303(0.2)</td> <td>299(0.3)</td> <td>fold(MNC["]_a C_mC["]_a N, ax NN)-Ni,Co</td>	40	B_2	325(0.0)	326(0.0)	303(0.2)	299(0.3)	fold(MNC ["] _a C _m C ["] _a N, ax NN)-Ni,Co
42 B_1 345(10.6)350(8.2)329(7.1)327(6.0)bath43 B_2 339(0.6)337(0.6)329(0.3)329(0.2)fold(MNC_a^" C_nC_a" N, ax NN), OPB(Me, Et)44A344(0.0)343(0.0)338(0.0)339(0.0)rot(Py, C_aC_a)45 B_3 346(0.5)345(0.6)345(0.3)348(0.1)r(M-N), IPB (ske)46A365(0.0)362(0.0)362(0.0)366(0.0)twist(m-ring, y), rot(m-ring, x)47 B_2 393(0.0)391(0.1)390(0.0)393(0.0)twist(m-ring, y), rot(m-ring, x)48 B_3 407(0.7)406(0.6)402(1.0)401(1.3)twist(m-ring, x), chair(y), $\varphi(C_p^*C1C2)$ 49 B_1 411(3.9)411(3.8)408(5.5)409(6.2) $\gamma(C_m^-C_a^-C_b^-C_\beta)$ 50A455(0.0)454(0.0)455(0.0)457(0.0)twist(m-ring, x), rot(m-ring, y)51 B_2 511(1.4)512(1.2)504(2.7)501(4.8)rot(Py) IPB52 B_3 503(1.3)500(1.1)502(3.2)502(6.5)twist(m-ring), fold(m-ring, ax $C_a' C_a')$ 53A520(0.0)519(0.0)518(0.0)twist(m-ring), def(C_p-C1-C2), IPB(Me,Et)54 B_3 529(4.4)529(4.2)524(4.6)twist(m-ring), fold(m-ring, ax $C_a' C_a')$ 55 B_1 566(0.1)558(1.4)559(1.4)560(1.5)fold(m-ring, ax $C_a' C_a')$, rot(Py, MN)57 B_1 560(0.1)559(0.1)563(0.1)566(0.1)fold(m-rin	41	B_1	317(0.1)	318(0.1)	315(0.1)	313(0.0)	rot(Me in Et), IPB(Et, Me)
43B2339(0.6)337(0.6)329(0.3)329(0.2)fold(MNC_a C_mC_a N, ax NN), OPB(Me, Et)44A344(0.0)343(0.0)338(0.0)339(0.0)rot(Py, $C_a C_a$)45B3346(0.5)345(0.6)345(0.3)348(0.1)r(M-N), IPB (ske)46A365(0.0)362(0.0)362(0.0)366(0.0)twist(m-ring, y), rot(m-ring, x)47B2393(0.0)391(0.1)390(0.0)393(0.0)twist(m-ring, y), rot(m-ring, x)48B3407(0.7)406(0.6)402(1.0)401(1.3)twist(m-ring, x), chair(y), $\varphi(C_{\beta}^{c}C1C2)$ 49B1411(3.9)411(3.8)408(5.5)409(6.2) $\gamma(C_m - C_a - C_{\beta} - C_{\beta})$ 50A455(0.0)455(0.0)457(0.0)twist(m-ring, x), rot(m-ring, y)51B2511(1.4)512(1.2)504(2.7)501(4.8)rot(Py) IPB52B3503(1.3)500(1.1)502(3.2)502(6.5)twist(m-ring), def(C_{\beta}-C1-C2), IPB(Me,Et)54B3529(4.4)529(4.2)524(4.6)524(4.6)twist(m-ring), def(C_{\beta}-C1-C2), IPB(Me,Et)54B3529(4.4)559(1.4)550(0.0)552(0.0)rot(Py) IPB56B2560(1.4)558(1.4)559(1.4)560(1.5)fold(m-ring, ax $C_a C_a C_a)$ 57B1560(0.1)657(0.0)558(0.0)552(0.0)rot(Py) IPB56B2560(1.1)559(0.1)566(0.1)fold(m-ring, ax $C_a C_a C_a$), rot(Py, MN), r(C_{\mu}^{-}C1) <td>42</td> <td>B₁</td> <td>345(10.6)</td> <td>350(8.2)</td> <td>329(7.1)</td> <td>327(6.0)</td> <td>bath</td>	42	B ₁	345(10.6)	350(8.2)	329(7.1)	327(6.0)	bath
44A344(0.0)343(0.0)338(0.0)339(0.0)rot(Py, C_aC_a)45B3346(0.5)345(0.6)345(0.3)348(0.1)r(M-N), IPB (ske)46A365(0.0)362(0.0)362(0.0)366(0.0)twist(m-ring, y), rot(m-ring, x)47B2393(0.0)391(0.1)390(0.0)393(0.0)twist(m-ring, y), bath(x)48B3407(0.7)406(0.6)402(1.0)401(1.3)twist(m-ring, x), chair(y), $\varphi(C_{\beta}^{c}C1C2)$ 49B1411(3.9)411(3.8)408(5.5)409(6.2) $\gamma(C_m^-C_a^-C_{\beta}-C_{\beta})$ 50A455(0.0)455(0.0)457(0.0)twist(m-ring, x), rot(m-ring, y)51B2511(1.4)512(1.2)504(2.7)501(4.8)52B3503(1.3)500(1.1)502(3.2)502(6.5)twist(m-ring), fold(m-ring, $ax C'_a C'_a$)53A520(0.0)518(0.0)518(0.0)twist(m-ring), def(C_{\beta}-C1-C2), IPB(Me,Et)54B3529(4.4)529(4.2)524(4.6)524(4.6)twist(m-ring), fold(m-ring, $ax C'_a C'_a$)55B1566(0.0)567(0.0)558(0.0)552(0.0)rot(Py) IPB56B2560(1.4)558(1.4)559(1.4)560(1.5)fold(m-ring, $ax C_a C_a$), rot(Py, MN)57B1560(0.1)605(0.1)607(0.1)609(0.1)fold(m-ring, $ax C_a C_a$)58B1606(0.1)605(0.1)607(0.1)609(0.1)fold(m-ring, $ax C_a C_a$)59B3613(0.9)	43	B_2	339(0.6)	337(0.6)	329(0.3)	329(0.2)	fold(MNC ["] _{α} C ["] _{n} C ["] _{α} N, ax NN), OPB(Me, Et)
45 B_3 346(0.5)345(0.6)345(0.3)348(0.1)r(M-N), IPB (ske)46A365(0.0)362(0.0)362(0.0)366(0.0)twist(m-ring, y), rot(m-ring, x)47 B_2 393(0.0)391(0.1)390(0.0)393(0.0)twist(m-ring, y), bath(x)48 B_3 407(0.7)406(0.6)402(1.0)401(1.3)twist(m-ring, x), chair(y), $\varphi(C_{\beta}^{c}C1C2)$ 49 B_1 411(3.9)411(3.8)408(5.5)409(6.2) $\gamma(C_m-C_a-C_{\beta}-C_{\beta})$ 50A455(0.0)455(0.0)457(0.0)twist(m-ring, x), rot(m-ring, y)51 B_2 511(1.4)512(1.2)504(2.7)501(4.8)rot(Py) IPB52 B_3 503(1.3)500(1.1)502(3.2)502(6.5)twist(m-ring), fold(m-ring, $ax C'_a C'_a)$ 53A520(0.0)518(0.0)518(0.0)twist(m-ring), def(C_{\beta}-C1-C2), IPB(Me,Et)54 B_3 529(4.4)529(4.2)524(4.6)twist(m-ring), fold(m-ring, $ax C'_a C'_a)$ 55 B_1 566(0.0)567(0.0)558(0.0)552(0.0)rot(Py) IPB56 B_2 560(1.4)558(1.4)559(1.4)560(1.5)fold(m-ring, $ax C'_a C'_a)$, rot(Py, MN)57 B_1 606(0.1)605(0.1)607(0.1)609(0.1)fold(m-ring, $ax C_a C_a)$ 58 B_1 606(0.1)605(0.1)607(0.1)609(0.1)fold(m-ring, $ax C_a C_a)$ 59 B_3 613(0.9)613(0.7)612(0.9)611(1.2)r(C_{\beta}^{-}-C1), IPB(Me,E	44	Α	344(0.0)	343(0.0)	338(0.0)	339(0.0)	$rot(Py, C_{\alpha}C_{\alpha})$
46A365(0.0)362(0.0)362(0.0)366(0.0)twist(m-ring, y), rot(m-ring, x)47B2393(0.0)391(0.1)390(0.0)393(0.0)twist(m-ring, y), bath(x)48B3407(0.7)406(0.6)402(1.0)401(1.3)twist(m-ring, x), chair(y), $\varphi(C_{\beta}^{"}C1C2)$ 49B1411(3.9)411(3.8)408(5.5)409(6.2) $\gamma(C_m-C_a-C_{\beta}-C_{\beta})$ 50A455(0.0)454(0.0)455(0.0)457(0.0)twist(m-ring, x), rot(m-ring, y)51B2511(1.4)512(1.2)504(2.7)501(4.8)rot(Py) IPB52B3503(1.3)500(1.1)502(3.2)502(6.5)twist(m-ring), fold(m-ring, ax $C'_a C'_a$)53A520(0.0)518(0.0)518(0.0)twist(m-ring), def(C_{\beta}-C1-C2), IPB(Me,Et)54B3529(4.4)529(4.2)524(4.6)524(4.6)twist(m-ring), def(C_{\beta}-C1-C2), IPB(Me,Et)54B3529(4.4)529(4.2)524(4.6)522(0.0)rot(Py) IPB56B2560(1.4)558(1.4)559(1.4)560(1.5)fold(m-ring, ax $C'_a C'_a$)57B1560(0.1)559(0.1)566(0.1)605(0.1)607(0.1)609(0.1)58B1606(0.1)605(0.1)607(0.1)609(0.1)fold(m-ring, ax $C_a C_a$)59B3613(0.9)613(0.7)612(0.9)611(1.2)r(C'_{\beta}-C1), IPB(Me,Et), def(Py)60B2619(0.5)619(0.4)617(0.4)616(0.7)rt(C'_{\alpha}-C1), IPB(Me,Et)	45	B ₃	346(0.5)	345(0.6)	345(0.3)	348(0.1)	r(M-N), IPB (ske)
47B2393(0.0)391(0.1)390(0.0)393(0.0)twist(m-ring, y), bath(x)48B3407(0.7)406(0.6)402(1.0)401(1.3)twist(m-ring, x), chair(y), $\varphi(C_{B}^{\circ}C1C2)$ 49B1411(3.9)411(3.8)408(5.5)409(6.2) $\gamma(C_m-C_a-C_{\beta}-C_{\beta})$ 50A455(0.0)454(0.0)455(0.0)457(0.0)twist(m-ring, x), rot(m-ring, y)51B2511(1.4)512(1.2)504(2.7)501(4.8)rot(Py) IPB52B3503(1.3)500(1.1)502(3.2)502(6.5)twist(m-ring), fold(m-ring, ax $C_a' C_a'$)53A520(0.0)519(0.0)518(0.0)518(0.0)twist(m-ring), def(C_{\beta}-C1-C2), IPB(Me,Et)54B3529(4.4)529(4.2)524(4.6)524(4.6)twist(m-ring), fold(m-ring, ax $C_a' C_a')$ 55B1566(0.0)567(0.0)558(0.0)552(0.0)rot(Py) IPB56B2560(1.4)558(1.4)559(1.4)560(1.5)fold(m-ring, ax $C_a' C_a')$, rot(Py, MN)57B1560(0.1)559(0.1)563(0.1)566(0.1)fold(m-ring, ax $C_a C_a)$, rot(Py, MN), r(C_{\beta}^{-}-C1)58B1606(0.1)605(0.1)607(0.1)609(0.1)fold(m-ring, ax $C_a C_a)$ 59B3613(0.9)613(0.7)612(0.9)611(1.2)r(C_{\beta}^{-}-C1), IPB(Me,Et), def(Py)60B2619(0.5)619(0.4)617(0.4)616(0.7)r(C_{\alpha}^{-}-C_{A_{\alpha}}), IPB(Me,Et), def(Py)	46	Α	365(0.0)	362(0.0)	362(0.0)	366(0.0)	twist(m-ring, y), rot(m-ring, x)
48B3407(0.7)406(0.6)402(1.0)401(1.3)twist(m-ring, x), chair(y), $\varphi(C_{B}^{*}C1C2)$ 49B1411(3.9)411(3.8)408(5.5)409(6.2) $\gamma(C_m-C_a-C_{\beta}-C_{\beta})$ 50A455(0.0)454(0.0)455(0.0)457(0.0)twist(m-ring, x), rot(m-ring, y)51B2511(1.4)512(1.2)504(2.7)501(4.8)rot(Py) IPB52B3503(1.3)500(1.1)502(3.2)502(6.5)twist(m-ring), fold(m-ring, $ax C_a' C_a'$)53A520(0.0)519(0.0)518(0.0)518(0.0)twist(m-ring), def(C_{\beta}-C1-C2), IPB(Me,Et)54B3529(4.4)529(4.2)524(4.6)524(4.6)twist(m-ring), fold(m-ring, $ax C_a' C_a'$)55B1566(0.0)567(0.0)558(0.0)552(0.0)rot(Py) IPB56B2560(1.4)558(1.4)559(1.4)560(1.5)fold(m-ring, $ax C_a' C_a'$), rot(Py, MN)57B1560(0.1)559(0.1)563(0.1)566(0.1)fold(m-ring, $ax C_a C_a$), rot(Py, MN), r(C_{B}^{*}-C1)58B1606(0.1)605(0.1)607(0.1)609(0.1)fold(m-ring, $ax C_a C_a$)59B3613(0.9)613(0.7)612(0.9)611(1.2)r(C_{B}^{*}-C1), IPB(Me,Et), def(Py)60B2619(0.5)619(0.4)617(0.4)616(0.7)r(C_{B}^{*}-C1), IPB(Me,Et), def(Py)	47	B ₂	393(0.0)	391(0.1)	390(0.0)	393(0.0)	twist(m-ring, y), bath(x)
49 B_1 411(3.9)411(3.8)408(5.5)409(6.2) $\gamma(C_m-C_a-C_{\beta}-C_{\beta})$ 50A455(0.0)455(0.0)455(0.0)457(0.0)twist(m-ring, x), rot(m-ring, y)51 B_2 511(1.4)512(1.2)504(2.7)501(4.8)rot(Py) IPB52 B_3 503(1.3)500(1.1)502(3.2)502(6.5)twist(m-ring), fold(m-ring, $ax C'_a C'_a$)53A520(0.0)519(0.0)518(0.0)518(0.0)twist(m-ring), def(C_{\beta}-C1-C2), IPB(Me,Et)54 B_3 529(4.4)529(4.2)524(4.6)524(4.6)twist(m-ring), fold(m-ring, $ax C'_a C'_a$)55 B_1 566(0.0)567(0.0)558(0.0)552(0.0)rot(Py) IPB56 B_2 560(1.4)558(1.4)559(1.4)560(1.5)fold(m-ring, $ax C'_a C'_a$), rot(Py, MN)57 B_1 560(0.1)559(0.1)563(0.1)566(0.1)fold(m-ring, $ax C_a C_a$), rot(Py, MN), r(C'_{\beta}-C1)58 B_1 606(0.1)605(0.1)607(0.1)609(0.1)fold(m-ring, $ax C_a C_a$)59 B_3 613(0.9)613(0.7)612(0.9)611(1.2)r(C'_{\alpha}-C1), IPB(Me,Et), def(Py)60 B_2 619(0.5)619(0.4)617(0.4)616(0.7)r(C'_{\alpha}-C_1), IPB(Me,Et), def(Py)	48	B ₃	407(0.7)	406(0.6)	402(1.0)	401(1.3)	twist(m-ring, x), chair(y), $\varphi(C_{\beta}^{"}C1C2)$
50A455(0.0)454(0.0)455(0.0)457(0.0)twist(m-ring, x), rot(m-ring, y)51B2511(1.4)512(1.2)504(2.7)501(4.8)rot(Py) IPB52B3503(1.3)500(1.1)502(3.2)502(6.5)twist(m-ring), fold(m-ring, $ax C'_a C'_a$)53A520(0.0)519(0.0)518(0.0)518(0.0)twist(m-ring), def(C_{\beta}-C1-C2), IPB(Me,Et)54B3529(4.4)529(4.2)524(4.6)524(4.6)twist(m-ring), fold(m-ring, $ax C'_a C'_a$)55B1566(0.0)567(0.0)558(0.0)552(0.0)rot(Py) IPB56B2560(1.4)558(1.4)559(1.4)560(1.5)fold(m-ring, $ax C'_a C'_a$), rot(Py, MN)57B1560(0.1)559(0.1)563(0.1)566(0.1)fold(m-ring, $ax C_a C_a$), rot(Py, MN), r(C'_{\beta}-C1)58B1606(0.1)605(0.1)607(0.1)609(0.1)fold(m-ring, $ax C_a C_a$)59B3613(0.9)613(0.7)612(0.9)611(1.2)r(C'_{B}-C1), IPB(Me,Et), def(Py)60B2619(0.5)619(0.4)617(0.4)616(0.7)r(C'_{B}-C1), IPB(Me,Et), def(Py)	49	B ₁	411(3.9)	411(3.8)	408(5.5)	409(6.2)	$\gamma(C_m-C_{\alpha}-C_{\beta}-C_{\beta})$
51 B_2 511(1.4)512(1.2)504(2.7)501(4.8)rot(Py) IPB52 B_3 503(1.3)500(1.1)502(3.2)502(6.5)twist(m-ring), fold(m-ring, $ax C'_a C'_a)$ 53A520(0.0)519(0.0)518(0.0)518(0.0)twist(m-ring), def(C_{\beta}-C1-C2), IPB(Me,Et)54 B_3 529(4.4)529(4.2)524(4.6)524(4.6)twist(m-ring), fold(m-ring, $ax C'_a C'_a)$ 55 B_1 566(0.0)567(0.0)558(0.0)552(0.0)rot(Py) IPB56 B_2 560(1.4)558(1.4)559(1.4)560(1.5)fold(m-ring, $ax C'_a C'_a)$, rot(Py, MN)57 B_1 560(0.1)559(0.1)563(0.1)566(0.1)fold(m-ring, $ax C_a C_a)$, rot(Py, MN), r(C''_{\beta}-C1)58 B_1 606(0.1)605(0.1)607(0.1)609(0.1)fold(m-ring, $ax C_a C_a)$ 59 B_3 613(0.9)613(0.7)612(0.9)611(1.2)r(C''_{\beta}-C1), IPB(Me,Et), def(Py)60 B_2 619(0.5)619(0.4)617(0.4)616(0.7)r(C''_{\alpha}-C_{M}), IPB(Me,Et), def(Py)	50	Α	455(0.0)	454(0.0)	455(0.0)	457(0.0)	twist(m-ring, x), rot(m-ring, y)
52B3503(1.3)500(1.1)502(3.2)502(6.5)twist(m-ring), fold(m-ring, $ax C'_{\alpha}C'_{\alpha}$)53A520(0.0)519(0.0)518(0.0)518(0.0)twist(m-ring), def(C_{\beta}-C1-C2), IPB(Me,Et)54B3529(4.4)529(4.2)524(4.6)524(4.6)twist(m-ring), fold(m-ring, $ax C'_{\alpha}C'_{\alpha}$)55B1566(0.0)567(0.0)558(0.0)552(0.0)rot(Py) IPB56B2560(1.4)558(1.4)559(1.4)560(1.5)fold(m-ring, $ax C'_{\alpha}C''_{\alpha}$), rot(Py, MN)57B1560(0.1)559(0.1)563(0.1)566(0.1)fold(m-ring, $ax C_{\alpha}C_{\alpha}$), rot(Py, MN), r(C'_{\beta}-C1)58B1606(0.1)605(0.1)607(0.1)609(0.1)fold(m-ring, $ax C_{\alpha}C_{\alpha}$)59B3613(0.9)613(0.7)612(0.9)611(1.2)r(C'_{\beta}-C1), IPB(Me,Et), def(Py)60B2619(0.5)619(0.4)617(0.4)616(0.7)r(C'_{\alpha}-C_{M}), IPB(Me,Et), def(Py)	51	B ₂	511(1.4)	512(1.2)	504(2.7)	501(4.8)	rot(Py) IPB
53A520(0.0)519(0.0)518(0.0)518(0.0)twist(m-ring), def(C_{\beta}-C1-C2), IPB(Me,Et)54B3529(4.4)529(4.2)524(4.6)524(4.6)twist(m-ring), fold(m-ring, $ax C'_{\alpha}C'_{\alpha}$)55B1566(0.0)567(0.0)558(0.0)552(0.0)rot(Py) IPB56B2560(1.4)558(1.4)559(1.4)560(1.5)fold(m-ring, $ax C'_{\alpha}C''_{\alpha}$), rot(Py, MN)57B1560(0.1)559(0.1)563(0.1)566(0.1)fold(m-ring, $ax C_{\alpha}C_{\alpha}$), rot(Py, MN), r(C''_{\beta}-C1)58B1606(0.1)605(0.1)607(0.1)609(0.1)fold(m-ring, $ax C_{\alpha}C_{\alpha}$)59B3613(0.9)613(0.7)612(0.9)611(1.2)r(C''_{\beta}-C1), IPB(Me,Et), def(Py)60B2619(0.5)619(0.4)617(0.4)616(0.7)r(C''_{\alpha}-C_{M}), IPB(Me,Et), def(Py)	52	B ₃	503(1.3)	500(1.1)	502(3.2)	502(6.5)	twist(m-ring), fold(m-ring, ax $C'_{\alpha}C'_{\alpha}$)
54 B3 529(4.4) 529(4.2) 524(4.6) 524(4.6) twist(m-ring), fold(m-ring, $ax C'_a C'_a)$ 55 B1 566(0.0) 567(0.0) 558(0.0) 552(0.0) rot(Py) IPB 56 B2 560(1.4) 558(1.4) 559(1.4) 560(1.5) fold(m-ring, $ax C'_a C''_a$), rot(Py, MN) 57 B1 560(0.1) 559(0.1) 563(0.1) 566(0.1) fold(m-ring, $ax C_a C_a$), rot(Py, MN), r(C''_{\beta}-C1) 58 B1 606(0.1) 605(0.1) 607(0.1) 609(0.1) fold(m-ring, $ax C_a C_a$) 59 B3 613(0.9) 613(0.7) 612(0.9) 611(1.2) r(C''_{\beta}-C1), IPB(Me,Et), def(Py) 60 B2 619(0.5) 619(0.4) 617(0.4) 616(0.7) r(C''_{\beta}-C_{A_{a}}), IPB(Me,Et), def(Py)	53	Α	520(0.0)	519(0.0)	518(0.0)	518(0.0)	twist(m-ring), def(C _{β} -C1-C2), IPB(Me,Et)
55 B_1 566(0.0) 567(0.0) 558(0.0) 552(0.0) rot(Py) IPB 56 B_2 560(1.4) 558(1.4) 559(1.4) 560(1.5) fold(m-ring, $ax C_a^{"}C_a^{"})$, rot(Py, MN) 57 B_1 560(0.1) 559(0.1) 563(0.1) 566(0.1) fold(m-ring, $ax C_a C_a$), rot(Py, MN), r($C_{\beta}^{"}$ -C1) 58 B_1 606(0.1) 605(0.1) 607(0.1) 609(0.1) fold(m-ring, $ax C_a C_a$) 59 B_3 613(0.9) 613(0.7) 612(0.9) 611(1.2) r($C_{\beta}^{"}$ -C1), IPB(Me,Et), def(Py) 60 B_2 619(0.5) 619(0.4) 617(0.4) 616(0.7) r($C_{\alpha}^{"}$ -C _M), IPB(Me,Et), def(Py)	54	B ₃	529(4.4)	529(4.2)	524(4.6)	524(4.6)	twist(m-ring), fold(m-ring, ax $C'_{\alpha}C'_{\alpha}$)
56 B2 560(1.4) 558(1.4) 559(1.4) 560(1.5) fold(m-ring, $ax C_a^{"} C_a^{"}$), rot(Py, MN) 57 B1 560(0.1) 559(0.1) 563(0.1) 566(0.1) fold(m-ring, $ax C_a C_a$), rot(Py, MN), r(C_{\beta}^{"}-C1) 58 B1 606(0.1) 605(0.1) 607(0.1) 609(0.1) fold(m-ring, $ax C_a C_a$) 59 B3 613(0.9) 613(0.7) 612(0.9) 611(1.2) r(C_{\beta}^{"}-C1), IPB(Me,Et), def(Py) 60 B2 619(0.5) 619(0.4) 617(0.4) 616(0.7) r(C_{\alpha}^{"}-C_{A_{\alpha}}), IPB(Me,Et), def(Py)	55	B_1	566(0.0)	567(0.0)	558(0.0)	552(0.0)	rot(Py) IPB
57 B_1 560(0.1) 559(0.1) 563(0.1) 566(0.1) fold(m-ring, $ax C_aC_a)$, rot(Py, MN), r($C_{\beta}^{"}$ -C1) 58 B_1 606(0.1) 605(0.1) 607(0.1) 609(0.1) fold(m-ring, $ax C_aC_a)$, rot(Py, MN), r($C_{\beta}^{"}$ -C1) 59 B_3 613(0.9) 613(0.7) 612(0.9) 611(1.2) r($C_{\beta}^{"}$ -C1), IPB(Me,Et), def(Py) 60 B_2 619(0.5) 619(0.4) 616(0.7) r($C_{\alpha}^{"}$ -C _M), IPB(Me,Et), def(Py)	56	B_2	560(1.4)	558(1.4)	559(1.4)	560(1.5)	fold(m-ring, ax $\overline{C''_{\alpha}C''_{\alpha}}$), rot(Py, MN)
58 B_1 606(0.1) 605(0.1) 607(0.1) 609(0.1) fold(m-ring, $ax C_aC_a)$ 59 B_3 613(0.9) 613(0.7) 612(0.9) 611(1.2) $r(C_{\beta}^{\mu}$ -C1), IPB(Me,Et), def(Py) 60 B_2 619(0.5) 619(0.4) 616(0.7) $r(C_{\alpha}^{\mu}-C_{Ma})$, IPB(Me,Et), def(Py)	57	B ₁	560(0.1)	559(0.1)	563(0.1)	566(0.1)	fold(m-ring, $ax C_{\alpha}C_{\alpha}$), rot(Py, MN), r(C ["] ₈ -C1)
59 B_3 613(0.9) 613(0.7) 612(0.9) 611(1.2) $r(C_{\beta}^{"}-C1)$, IPB(Me,Et), def(Py) 60 B_2 619(0.5) 619(0.4) 616(0.7) $r(C_{\alpha}^{"}-C_{Ma})$, IPB(Me,Et), def(Py)	58	B ₁	606(0.1)	605(0.1)	607(0.1)	609(0.1)	fold(m-ring, $ax C_{\alpha}C_{\alpha}$)
$\begin{array}{c} 60 \\ B_2 \\ 619(0.5) \\ 619(0.4) \\ 617(0.4) \\ 616(0.7) \\ r(C_{r-C_{Mo}}) \\ PB(Me,Et) \\ def(Pv) \\ \end{array}$	59	B ₃	613(0.9)	613(0.7)	612(0.9)	611(1.2)	$r(C_{\beta}^{"}-C1)$, IPB(Me.Et). def(Pv)
	60	B ₂	619(0.5)	619(0.4)	617(0.4)	616(0.7)	$r(C_{\text{fr}}^{\text{c}}C_{\text{Me}})$, IPB(Me.Et). def(Pv)

^{*)} см. примечание к таблице S1. Обозначения координат, отсутствующих в примечании к таблице S1: sad – седлообразная деформация макроцикла; butterfly – неплоская деформация макроцикла, напоминающая махание крыльев бабочки, соответствует комбинации куполообразного и ruffling-искажений (в скобках – ориентация тела «бабочки»); rot – поворот заместителя или фрагмента макроцикла (заместитель или фрагмент и ось вращения (для фрагмента) указаны в скобках); rock – покачивание фрагмента m-ring (в скобках указана ось); sci – движение, похожее на ножницы; ruf –

ruffling-искажение макроцикла; bath – складывание фрагмента m-ring в виде ванны (в скобках – ось, проходящая через фрагмент); $\gamma(C_m-C_\alpha-C_\beta-C_\beta)$ – зигзагообразное неплоское искажение макроцикла; fold —складывание фрагмента по оси (в скобках указан тип фрагмента и ось складывания)

Рисунок S1. Корреляционные зависимости $v = f(\omega)$: $v u \omega$ - положения максимумов полос в экспериментальном и модельном спектрах, соответственно. R- коэффициент корреляции.