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New Approach for Accurate QSPR Modeling of Metal Complexation: 
Application to Stability Constants of Complexes of Lanthanide Ions Ln3+, 
Ag+, Zn2+, Cd2+ and Hg2+ with Organic Ligands in Water
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In this paper, we propose a new definition of models applicability domain (AD) based on the selection of sufficient 
portion of individual QSPR models to be accepted for property prediction. Efficiency of this approach has been 
demonstrated in ensemble modeling of the stability constants logK of the 1:1 complexes of 17 lanthanide and transition 
metal ions (M) with various organic ligands (L) in water. The individual linear models based on substructural molecular 
fragment (SMF) descriptors were validated in 5-fold cross-validation procedure. Each test set compound was a subject 
of two previously developed ADs: fragment control and bounding box. After that, predictions for a given compound 
were considered reliable if the number of accepted models were larger than user defined portion of the total amount 
of selected individual models; otherwise the compound was discarded from the modeling. Application of this rule - 
“Quorum Control” – resulted in significant increase predictive performance of consensus models. 

Keywords: Complexes with metal ions, organic ligands, QSPR modeling, stability constants, models applicability 
domain, multiple linear regression analysis, substructural molecular fragments.

Новый подход для точного QSPR моделирования 
комплексообразования металлов: применение к константам 
устойчивости комплексов лантанидных ионов Ln3+, Ag+, Zn2+, Cd2+ 
и Hg2+ с органическими лигандами в воде
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Предложено новое определение области применимости моделей (AD), основанное на выборе достаточной порции 
индивидуальных QSPR моделей, чтобы быть принятыми для предсказания свойства. Эффективность этого 
подхода продемонстрирована в использовании ансамбля моделей структура - свойство для оценки констант 
устойчивости logKML комплексов 17 катионов лантанидов и переходных металлов (M) с разнообразными 
органическими лигандами (L) в воде. Прогностическая способность индивидуальных линейных моделей на 
основе субструктурных молекулярных фрагментов проверена процедурой внешнего пятикратного скользящего 
контроля. Для каждого тестируемого соединения применялись ранее разработанные методы AD: контроль 
новых фрагментов и границ числа вхождений фрагмента. Затем предсказание для данного соединения считалось 
надежным, если число принятых моделей было больше заданной пользователем части всех используемых 
индивидуальных моделей; иначе соединение исключалось из моделирования. Результатом применения этого 
правила “кворум контроля” было существенное увеличение прогностической способности консенсус моделей.

Ключевые слова: Металлокомплексы, органические лиганды, QSPR моделирование, константы устойчивости, 
область применимости моделей, множественный линейный регрессионный анализ, субструктурные 
молекулярные фрагменты.
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Cd2+, Hg2+) metal ions with sets of diverse organic molecules 
in aqueous solution at 298 K and an ionic strength 0.1 M. 
The models have been validated by external 5-fold cross-
validation procedure. The root mean squared error (RMSE) 
of predictions is similar to systematic errors in experimental 
data. This is twice smaller compared to earlier reported models 
for which “quorum control” AD has not been applied. 

Methods

Data Sets
The experimental stability constant (logK) values for the 1:1 

(M:L) complexes of lanthanide (Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, 
Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+) and transition (Ag+, Zn2+, 
Cd2+, Hg2+) metal ions with diverse organic ligands in water were 
selected from the IUPAC Stability Constants Database (SC DB) 
(version 5.33, Academic Software)[15] at standard temperature 298 
K and an ionic strength I = 0.1 M. Some logK values (around 15 %) 
were corrected to specified temperature and an ionic strength using 
the procedures included in SC DB. 

2D structures of ligands, names of metal ions and 
corresponding logK values resulted from searching in SC DB were 
converted into Structure - Data Files (SDF) served as an input in 
the MLR module of the ISIDA (In Silico Design and Data Analysis) 
/QSPR program.[53] The data manager EdiSDF[35,46,54] was used to 
prepare data sets containing finally from 52 (Hg2+) to 568 (Zn2+) 
organic ligands (Figure 1). The logK values vary in the ranges from 
0.6 – 1.8 to 17.9 – 24.7 (lanthanide ions), from 0.6 to 8.7 (Ag+), 
from 0.1 to 21.3 (Zn2+, Cd2+) and from 4.9 to 28.5 (Hg2+).

Introduction

Binding of metal ions by organic ligands in solutions 
plays an important role in various workflows in industry[1-4] 
and biological processes.[4-7] Many efforts were done to 
design the ligands that selectively bind a given metal ion and 
allow to separate metal ions.[8-14] At present, a large amount 
of known experimental data concerning stability constants of 
metal-ligand complexes has been collected.[15-21] This opens 
an opportunity to develop quantitative structure - property 
relationships (QSPR) linking the stability constants with the 
structure of ligands which, in turn, can be used for computer-
aided design of new metal binders.[22, 23] 

To date, QSPR modeling of stability constants 
of the metal – ligand complexation was performed for 
alkali,[24-32] alkaline-earth,[32-38] rare-earth[39-42] and transition 
metal[23,34,36,37,40,43-45] ions. In many cases the practical 
application of the reported QSPR is complicated due to the 
lack of complete information about descriptors’ calculations 
and details of machine-learning method implementation. 
In order to overcome this problem, we have developed the 
COMET (COmplexation of METals) software[39] which 
implements previously elaborated QSPR models of stability 
constants (logK) of the 1:1 (M:L) complexes of diverse 
organic ligands with alkaline-earth (Sr2+,[33,35] Ca2+, Ba2+, 
Mg2+[33]), lanthanide (Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, 
Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+)[39] and transition metal 
ions (Ag+,[40] Zn2+, Cd2+ and Hg2+,[23] Mn2+, Fe2+, Y3+, La3+, 
Pb2+, and UO2

2+[43]) in water at 298 K and an ionic strength 
0.1 M. All these models are based on substructural molecular 
fragments (SMF)[23,30,33] representing a subtype of the ISIDA 
descriptors.[46] SMF are subgraphs of molecular graph[30,47] 
whereas fragment occurrences are descriptor values. SMF 
descriptors are calculated solely from 2D chemical structures. 
It has been demonstrated that prediction performance of the 
models built on SMF is, at least, as good as that for the models 
involving molecular descriptors of different types,[48-50] E-state 
counts and E-state indices[40] and pharmacophore descriptors.
[51] In our studies for alkaline-earth[33] and some heavy metal 
ions,[43] the root-mean squared error (RMSE) of predictions 
is comparable with experimental systematic errors.[15] For 
lanthanide ions,[39,52] Ag+,[40] Zn2+, Cd2+, and Hg2+,[23] RMSE of 
predictions of the logK values varies more widely: from 1.7 
to 1.9 for transition metals and from 1.0 - 1.9 (0.5 < logK < 
10) to 2.5 - 3.7 (logK ≥ 10) for lanthanides. 

There are two possible reasons of relatively poor 
prediction performance of the models. The first one is related 
to relatively poor quality of experimental data collected 
from various sources: logK values reported for the same 
equilibrium by different authors may differ.[15] Another 
reason could be related to some methodological problems: 
choice of descriptors, machine-learning methods and models 
applicability domain (AD). In this paper, we focus on the AD 
issue. We propose a new AD definition –“quorum control” 
– which significantly improves predictive performance. 
The efficiency of this approach has been demonstrated on 
previously studied datasets for metal complexation.

Here we report new QSPR ensemble models for the 
stability constant logK of the 1:1 (M:L) complexes of 13 
lanthanide (Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, 
Ho3+, Er3+, Tm3+, Yb3+, Lu3+) and 4 transition (Ag+, Zn2+, 

Figure 1. The number of ligands in individual datasets used in 
QSPR modeling of logK.

0

100

200

300

400

500

Number of ligands 

17 metal ions  

952 organic ligands  

2632 logK values  

Gd3+ Dy3+ Er 3+ Yb 3+ Ag+Sm3+

Ce3+

Pr3+

Nd3+ Eu3+ Tb3+ Ho3+ Tm3+ Lu3+ Zn2+

Cd2+

Hg2+

If several values of the stability constant logK were available 
for a particular ligand (Table 1), for selections we followed the 
recommendations of IUPAC;[55] in some cases the most recent data 
or the data consistent with respect to different experimental methods 
were chosen. It should be noted that discrepancies in experimental 
logK values reported for the same equilibrium by different authors 
may attain rather high values (till 2.3 logK unites, see Table 1).

Studied molecules include crown-ethers, thia-, and aza-
crowns with neutral and acidic lariat groups, cryptands; derivatives 
of carboxylic and polycarboxylic acids; polyamines, (thio)ethers, 
various amino acids and aminocarboxylates; derivatives of 
phosphonous, (di)phosphoric, (di)phosphonic and phosphinic acids; 
cyclic and acyclic polydentate ligands with the terminal carboxy and 
phosphoryl groups separated by various cyclic or acyclic spacers; 
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various (di)sulfonic acids; ternary amines with phosphono and 
carboxy groups; mono- and dipodands of ternary amines; amide, 
phenol, glucose, imidazole, adenosine, inosine, uridine, uracil, 
cytidine, thymidine, thymidine, adenine and guanosine derivatives; 
pyridines; purine, phenanthroline, hydrazide derivatives, etc.

Descriptors
SMF[23,30,54,72] as subgraphs of molecular graphs of the 

ligands were used as descriptors in QSPR models. Molecules were 
represented with implicit hydrogen atoms. Two classes of the SMF 

Table 1. The logK values for the 1:1 (M:L) complexes of several studied ligands with lanthanide ions in water at temperature 298 K and an 
ionic strength 0.1 M. The demonstration of a discrepancy in the experimental logK values.

ligand metal ion logK ref. ligand metal ion logK ref.

NH2

O

OH Ce3+

3.96

5.02

[56]

[57]

OH

NN
N

O

O

HO
N

O

OH

O
HO

Gd3+

24.67

27.00

[58]

[59]

O

OH

O

Pr3+

1.96

1.14

[60]

[61]

OH
OH Dy3+

9.12

11.34

[62]

[63]

NH

O

NH2 N
H

O

O

OH
Nd3+

3.27

1.75

[64]

[65]
N
H

N
H

O

OH

O

HO

O

OH

O

OH
Ho3+

13.10

13.60

[66]

[67]

O OH
O

OH

O

HO

OHO

Eu3+

5.81

4.86

[68]

[69]

O

OHHO

O
Er3+

4.89

4.42

[70]

[71]

descriptors were generated: shortest topological paths with explicit 
representation of atoms and bonds, and terminal groups as shortest 
paths but defined by length and explicit identification of terminal 
atoms and bonds[23,30,33,43] (Figure 2). 

Single, double and triple bonds were considered different 
in acyclic and cyclic non-aromatic motifs. For every class of the 
sequences, the minimal (2 ≤ nmin ≤ 4) and maximal (6 ≤ nmax ≤ 15) 
numbers of constituent atoms are defined. The sequences include 
all intermediate shortest paths with n atoms: nmin ≤ n ≤ nmax. 60 types 
of the sequences of two classes have been generated varying the 
values of nmin and nmax. SMF descriptors of each particular type 
were used as an initial descriptors’ pool in QSPR modeling to build 
several QSPR models using different variable selection technique. 

Models Building and Validation
QSPR modeling was performed using Multiple Linear 

Regression Analysis (MLR) of the ISIDA/QSPR program[53] 
(Figure 3) with combined forward and backward stepwise variable 
selection techniques.[23,30,33,46,73] MLR is applied to build linear 
relationships between independent variables (SMF descriptors: Xi, i 
=1, 2,…) and a dependent variable (here target property Y = logK): 
Y = c0 + ΣciXi, where every descriptor value (SMF count xij, j = 1, 
2,…, n; here n is the number of ligands) is associated with observed 
property value (yj, j = 1, 2,…, n), ci is descriptor contribution, and 
c0 is the independent term which is omitted in a part of models. The 
Singular Value Decomposition method is used to fit contributions 
ci and to minimize the sum of squared residuals which are squared 
differences between the property values calculated by the model 
(yj,calc) and observed values (yj,exp) in the training set. The program 
can generate more than 25,000 MLR models; each of them 
corresponds to particular type of the SMF descriptors and MLR 
equation (c0 = 0 or c0 ≠ 0) and applied variable selection technique. 
Here, three sub-algorithms FVS-1, FVS-2 and FVS-3 for forward 
stepwise variable selection [33] and the algorithm for backward 
stepwise variable selection[28] have been applied. The efficiency 
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Figure 2. Two classes of SMF: shortest topological paths with 
explicit representation of atoms and bonds (a), and terminal groups 
as shortest paths defined by length and explicit identification 
of terminal atoms and bonds (b). The SMF types IAB(2-4) and 
IAB(2-4)t are shown.
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of the FVS procedure was compared with an implementation of 
Genetic Algorithm[33,51] on the QSPR modeling of antifilarial and 
different types of anti-HIV activities. The results show similar 
predictive performance of computationally expensive GA-based 
approaches and FVS calculations. The leave-one-out (LOO) cross–
validation correlation coefficient Q served as a criterion of model 
selection: the acceptable models were characterized by Q2 > 0.5. 

The logK values were predicted by consensus models 
(CMs). One consensus model combines predictions issued from a 
multitude of individual models originated from different types of 
the SMF descriptors and variable selection algorithms.[23,28,35,73,74] 
Thus for every compound from the test set, the target property is 
computed as an arithmetic mean of values obtained by individual 
models excluding those leading to outlying values according to 
Tompson’s rule.[75] If a test compound is identified as being outside 
an applicability domain (AD) of individual model, the prediction by 
given model for a given compound is not included in CM.

In order to validate CM, the external 5-fold cross validation 
(5-CV) was applied.[40,74] In this procedure, an entire dataset 
is divided in 5 non-overlapping pairs of training and test sets. 
Predictions are prepared for all molecules (n) of the initial dataset, 
since each of them belongs to one of the test sets. The descriptor 
selection and model acceptance procedures were performed only 
on the training folds. Predictive performance of CM has been 
estimated using coefficient of determination (R0

2) and root-mean 
squared error (RMSE) for a combination of all five test sets
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where Yexp and Ypred are, respectively, experimental and predicted 
values of the stability constant logK.

Models Applicability Domain Definitions
Ensemble of three approaches for model AD has been applied. 

Two of them - Bounding Box and Fragment Control – have been 
reported earlier.[46] The bounding box method considers as AD a 

multi-dimension descriptor space confined by minimal and maximal 
values of counts of SMF descriptors involved in an individual 
model. Fragment control rejects a prediction for a test compound 
containing SMF fragments which don’t occur in the initial SMF 
pool generated for the training set.[23,33,43] 

Here, we introduce “Quorum Control”, a new AD definition 
which discards a test compound if CM includes less than nQ % 
of the total number of selected individual models (“no consensus 
without quorum”). Here nQ = 15 - 20 % was used. Application of the 
“Quorum Control” AD results in discarding from the initial dataset 
molecules containing “rare” fragments, e.g., occurring in less than 3 
molecules. Another speaking, this new AD withdraws the molecules 
with statistically insignificant fragments. The role of the approach 
is to discard the molecules for which predictions are considered 
as unreliable. This leads to iterative CMs building with reduction 
of the modeling sets in 1.5 - 2 times. Finally, 952 organic ligands 
and 2632 logK values were involved in the modeling. Separately, 
this includes 17 datasets of 103 (Ce3+), 149 (Pr3+), 141 (Nd3+), 161 
(Sm3+), 128 (Eu3+), 168 (Gd3+), 81 (Tb3+), 107 (Dy3+), 112 (Ho3+), 
94 (Er3+), 73 (Tm3+), 99 (Yb3+), 92 (Lu3+), 88 (Ag+), 568 (Zn2+), 416 
(Cd2+) and 52 (Hg2+) organic ligands (Figure 1).

Results and Discussion

1800 individual structure - property models were built 
for every metal ion in 5-CV procedure, only the most robust 
models (Q2 > 0.5) were selected to include in CMs. Obtained 
CMs demonstrate a reasonable predictive ability of logK in 
5-CV procedure: RMSE values vary from 0.52 (Ag+) to 1.10 
(Dy3+) with the exception of 1.39 (Hg2+) (Figures 4 and 5). 
RMSE value is essentially higher for Hg2+ than for the rest of 
metal ions as a result of moderate data set of diverse ligands. 
Squared determination coefficient R0

2 changes from 0.900 
(Ag+) to 0.977 (Gd3+).

“Quorum Control” guided QSPR models perform 
better than previously reported models[23,39,40,52] for all studied 
metal ions. In whole, RMSE values of predictions obtained in 
this work are twice lower than those for the earlier reported 
models[23,39,40,52] (Figure 4) and they are close to experimental 
systematic errors (see Table 1).

Different individual models involve several common 
fragments whose contributions into logK for particular metal 
slightly vary from one model to another one. For instance, in 

Figure 3. The interface of the ISIDA/QSPR program shows 
predicted versus experimental logK: highlighted ligand for selected 
data point for the Zn2+ complexation.

Figure 4. RMSE of the logK predictions obtained in 5-CV 
procedure: this work (dark blue) and from refs[23,40,52] for 
lanthanide ions,[52] Ag+,[40] Zn2+, Cd2+, and Hg2+[23] (blue).
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Figure 5. Predictive performance of the models built on 6 largest datasets for Pr3+, Nd3+ , Sm3+, Gd3+, Zn2+, and Cd2+. The plots show the 
correlations between predicted (in 5-fold cross validation) versus experimental logK values.
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the complexes of lanthanide ions, shortest topological paths 
O=C-C.N.C-C=O of 2,6-dicarboxypiperidyl-N-ethanoic 
acid, N-C-C=O occurred in 2-aminoacids and different 
acyclic and macrocyclic ligands with NCH2CO(OH) 
group(s), C.C.O.C.C.N-C-P=O in different aza-macrocycles 
with CH2PO(OH)2 pendant group(s) contribute each about 
2.5 logK units. (Here C.N, O.C, and C.C are fragments 
with single bond in cycles). Information about molecular 
moieties with high positive or negative contributions into 
logK could be particularly useful for the design of new 
metal binders.

Conclusions

In order to improve the predictive performance of 
QSPR models prepared with the ISIDA QSPR program, 
a new definition of models applicability domain (AD) 
has been proposed. This approach is closely related to the 
ensemble modeling technique in which many individual 
models (instead of one sole) are generated for one training 
set, followed by their application on the test set compounds. 
Some of these individual models may not be accepted because 
of the Bounding Box and Fragment Control AD approaches. 
More models are discarded, smaller predictive performance 
is expected. Thus, Quorum Control, a new AD definition 
imposes a threshold for the acceptance rate of individual 
models leading to reliable consensus.

Efficiency of this approach has been demonstrated in 
ensemble modeling of the stability constants logK of the 1:1 
complexes of 17 lanthanide and transition metal ions with 
various organic ligands in water. The individual linear models 
based on substructural molecular fragment descriptors were 
validated in 5-fold cross-validation procedure. It has been 
shown that application Quorum Control AD significantly 
increases predicted performance of the models. Thus, the 
root-mean squared error of predictions RMSE varies from 
0.52 (Ag+) to 1.39 (Hg2+), which is similar to systematic 
experimental errors.
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