DOI: 10.6060/mhc121091h

Synthesis and Biological Study of $O-\beta-D$ -Glucosides of 7-Hydroxy-3-(Disubstituted Imidazol-2-yl)-4H-chromen-4-ones

Kishor M. Hatzade,^{a,b@} Vijay S. Taile,^a and Vishwas N. Ingle^a

^aDepartment of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur-440033, India ^bDepartment of Chemistry, Dhote Bandhu Science College, Gondia-441614, India [@]Corresponding author E-mail: kishorhatzade@gmail.com

A series of 7-o- β -D-glucopyranosyloxy-3-(disubstituted imidazol-2-yl)-4H-chromen-4-ones **5** was synthesized. The 7-hydroxy-3-formyl-4H-chromen-4-one **1** reacted with various 1,2-dicarbonyl compounds **2** in the presence of ammonium acetate to furnish 7-hydroxy-3-(4,5-disubstitutedimidazol-2-yl)-4H-chromen-4-ones **3**, which on glucosylation with α -acetobromoglucose affords 2,3,4,6-tetra-o-acetyl-7-o- β -D-glucopyranosyloxy-3-(4,5-disubstituted imidazol-2-yl)-4H-chromen-4-ones **4**. 7-o- β -D-Glucopyranosyloxy-3-(4,5-disubstituted imidazol-2-yl)-4H-chromen-4-ones **5** were prepared by deacetylation with anhydrous zinc acetate in absolute methanol. Elemental analysis, IR, ¹H NMR, ¹³C NMR, EI-MS spectral data were obtained to determine the structure of the newly synthesized compounds.

Keywords: Chromone, imidazole, acetobromoglucose, glucosylation, glucosides.

Синтез и биологические исследования О- β -D-гликозидов 7-гидрокси-4*H*-хромен-4-онов с 4',5'-дизамещенными 3-имидазол-2'-ильными фрагментами

К. М. Хатзаде,^{а,b@} В. С. Таиле,^а В. Н. Ингле^а

^aRashtrasant Tukadoji Maharaj Nagpur University, 440033 Нагпур, Индия ^bDhote Bandhu Science College, 441614 Гондия, Индия [@]E-mail: kishorhatzade@gmail.com

Была синтезирована серия О-β-D-глюкопиранозилкоси-7-гидрокси-4H-хромен-4-онов с 4',5'-дизамещенными 3-имидазол-2'-ильными фрагментами 5. 7-Гидрокси-3-формил-4H-хромен-4-он 1 взаимодействовал с 1,2дикарбонил замещенными соединениями 2 в присутствии ацетата аммония с образованием 7-гидрокси-4Hхромен-4-онов с 4',5'-дизамещенными 3-имидазол-2'-ильными фрагментами 4. О-β-D-глюкопиранозилкоси-7-гидрокси-4H-хромен-4-оны с 4',5'-дизамещенными 3-имидазол-2'-ильными фрагментами 5 были получены деацилированием с безводным ацетатом цинка в абсолютном метаноле. Новые соединения были охарактеризованы с помощью элементного анализа, ИК, ¹H и ¹³С ЯМР спектроскопии и масс-спектрометрии (EI-MS).

Ключевые слова: Хромоны. имидазол, ацетобромоглюкоза, глюкозилирование, гликозиды.

Introduction

Carbohydrates are being considered as extremely useful stereo chemical building blocks for complex organic synthesis.^[1] Apart from being an energy source in leaving systems, carbohydrates increasingly are being recognized as playing important roles in a variety of biological processes, such as signaling, cell-cell communications, molecular and cellular targeting.^[2] $O-\beta$ -D-Glucosides possess higher degree of biological activities such as cell growth regulation, cell differentiation, immunological response, antitumour, antiparasitic, antifungal activities.^[3-11] Several therapeutically interesting biological activities of certain flavonoids have been reported including anticancer,^[12-17] anti-HIV,^[18-20] and antioxidant^[21-23] properties. Similarly imidazoles show antimalerial, antituberculosis, antifungal, anticonvulsant, antiprotozoal, anticancer, antihypertensive, anorectic, hypoglysacemic activities.^[24] Considering the above facts and also in continuation of our studies^[25] on chromone based heterocycles promoted to prepare several new organic compounds containing chromone, imidazole and glucose moieties. Herein we report the synthesis of new substituted flavonoids 7-hydroxy-3-(imidazol-2-yl)-chromones 3. These compounds were glucosylated with α -acetobromoglucose 7-*o*-β-*D*-glucopyranosyloxy-3-(imidazol-2-yl)vielding chromones 5.

C-9), 135.9 (s, C-5'), 131.9 (s, C-5), 128.0 (s, C-2',C-3'), 118.2 (s, C-3), 115.8 (s, C-10), 111.0 (s, C-6), 104.6 (s, C-8). EI-MS *m/z* (%): 229 (M⁺, 100), 136 (18), 91 (30). Anal. Calcd for $C_{12}H_8N_2O_3$: C, 63.16; H, 3.53; N, 12.28. Found: C, 63.10; H, 3.51; N, 12.21(%).

7-*Hydroxy-3-(4,5-dimethylimidazol-2-yl)-chromone* **3b.** Yield 76 %, mp 295 °C (chloroform + dioxane). IR (KBr) v cm⁻¹: 3412 (OH), 2989 (N-H), 1609 (C=O), 1452 (C=N), 1166 (C-O-C). ¹H NMR (DMSO- d_6) $\delta_{\rm H}$ ppm: 13.1 (s, 1'-H, N-H), 7.52 (s, 2-H, CH), 6.45-7.50 (m, 3H, Ar-H), 4.99 (s, 1H, -OH), 2.31(s, 2'-H, CH₃), 2.20 (s, 3'-H, CH₃); ¹³C NMR (DMSO- d_6) $\delta_{\rm C}$ ppm: 176.1 (s, C-4, C=O), 164.5 (s, C-7), 158.9 (s, C-2), 157.8 (s, C-9), 135.7 (s, C-5'), 132.1 (s, C-2', C-3'), 131.4 (s, C-5), 119.0 (s, C-3), 116.8 (s, C-10), 110.1 (s, C-6), 105.5 (s, C-8), 12.2 (s, CH₃ of C-2', C-3'). EI-MS *m/z* (%): 257 (M⁺, 100), 136 (15), 91 (19). Anal. Calcd for C₁₄H₁₂N₂O₃: C, 65.62; H, 4.72; N, 10.93. Found: C, 65.58; H, 4.72; N, 10.89(%).

7-Hydroxy-3-(4-phenylimidazol-2-yl)-chromone 3c. Yield 78 %, mp 282 °C (ethanol). IR (KBr) v cm⁻¹: 3400 (OH), 2990 (N-H), 1622 (C=O), 1455 (C=N), 1171 (C-O-C). ¹H NMR (DMSO- d_b) $\delta_{\rm H}$ ppm: 12.7 (s, 1'-H, N-H), 7.56 (s, 2-H, CH), 7.05 (s, 2'-H, CH), 6.41-7.50 (m, 8H, Ar-H), 5.02 (s, 1H, -OH). ¹³C NMR (DMSO- d_b) $\delta_{\rm C}$ ppm: 174.8 (s, C-4, C=O), 165.1 (s, C-7), 160.0 (s, C-2), 157.5 (s, C-9), 140.1 (s, C-3'), 135.5 (s, C-5'), 132.0 (s, C-5), 125-133.5 (aromatic 6C-atom), 121.0 (s, C-2'), 117.6 (s, C-3), 115.9 (s, C-10), 110.1 (s, C-6), 104.8 (s, C-8). EI-MS *m/z* (%): 305 (M⁺, 100), 136 (10), 91 (21). Anal. Calcd for C₁₈H₁₂N₂O₃: C, 71.05; H, 3.97; N, 9.21. Found: C, 71.01; H, 3.93; N, 9.21(%).

7-Hydroxy-3-(4,5-diphenylimidazol-2-yl)-chromone 3d. Yield 90 %, mp 220 °C (chloroform + dioxane). IR (KBr) v cm⁻¹: 3412

Experimental

All melting points (mp) measured in open capillary tube were uncorrected. FT-IR spectra were recorded on Perkin-Elmer spectrum Rx-I spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a Bruker II-400 NMR spectrophotometer (¹H, 400 MHz and ¹³C, 100 MHz), using TMS as an internal standard in DMSO and CDCl₃. Chemical shifts are reported (δ) relative to TMS. Mass spectra were determined on Hitachi Perkin-Elmer RMU 6D mass spectrometer. Elemental analysis for C, H, and N were determined using the Perkin-Elmer 2400 CHN rapid analyzer. Chemicals were obtained from Merck and Fluka and used without further purification. Various 1,2-dicarbonyl compounds were prepared using methods described in literature.^[27]

General procedure for the synthesis of compounds 3a-i. A mixture of 7-hydroxy-3-formyl chromone 1 (5 mmol), 1,2-dicarbonyl compounds 2a-i (5 mmol), ammonium acetate (10 mmol) and glacial acetic acid (50 ml) was refluxed for 2-3 h (monitored by TLC). It was poured on to cold water (200 ml). The solid obtained was filtered, washed with water and crystallized from solvents.

7-Hydroxy-3-(imidazol-2-yl)-chromone **3a.** Yield 81 %, mp 290 °C (ethanol). IR (KBr) v cm⁻¹: 3451 (OH), 2958 (N-H), 1616 (C=O), 1455 (C=N), 1150 (C-O-C). ¹H NMR (DMSO- d_6) δ_H ppm: 12.9 (s, 1'-H, N-H), 7.26 (s, 2-H, CH), 7.05 (d, 2'-H, 3'-H) (CH), 6.40-7.49 (m, 3H, Ar-H), 5.12 (s, 1H, -OH). ¹³C NMR (DMSO- d_6) δ_c ppm: 174.9 (s, C-4, C=O), 163.9 (s, C-7), 159.8 (s, C-2), 159.0 (s,

(OH), 2992 (N-H), 1631 (C=O), 1456 (C=N), 1160 (C-O-C). ¹H NMR (DMSO- d_6) $\delta_{\rm H}$ ppm: 12.9 (s, 1'-H, N-H), 7.57 (s, 2-H, CH), 6.43-7.50 (m, 13H, Ar-H), 4.94 (s, 1H, -OH). ¹³C NMR (DMSO- d_6) $\delta_{\rm C}$ ppm: 175.2 (s, C-4, C=O), 164.9 (s, C-7), 159.4 (s, C-2), 157.9 (s, C-9), 135.6 (s, C-5'), 133.1 (s, C-5), 129.0 (s, C-2', C-3'), 127-133 (aromatic 12C-atom), 117.9 (s, C-3), 117.0 (s, C-10), 109.8 (s, C-6), 106.1 (s, C-8). EI-MS *m/z* (%): 380 (M⁺, 100), 136 (15), 91 (34). Anal. Calcd for C₂₄H₁₆N₂O₃: C, 75.78; H, 4.24; N, 7.36. Found: C, 75.75; H, 4.21; N, 7.35(%).

7-Hydroxy-3-[4-phenyl,5-(p-methoxyphenyl)imidazol-2-yl]chromone **3e.** Yield 89 %, mp 284 °C (chloroform + dioxane). IR (KBr) v cm⁻¹: 3447 (OH), 2994 (N-H), 1620 (C=O), 1457 (C=N), 1154 (C-O-C). ¹H NMR (DMSO- d_6) $\delta_{\rm H}$ ppm: 12.6 (s, 1'-H, N-H), 7.52 (s, 2-H, CH), 6.38-7.49 (m, 12H, Ar-H), 4.93 (s, 1H, -OH), 3.69 (s, 3H, OCH₃). ¹³C NMR (DMSO- d_6) $\delta_{\rm C}$ ppm: 176.1 (s, C-4, C=O), 165.2 (s, C-7), 159.0 (s, C-9), 158.9 (s, C-2), 136.1 (s, C-5'), 131.6 (s, C-5), 128.7 (s, C-2', C-3'), 119.2 (s, C-3), 117.1 (s, C-10), 115-135 (aromatic 12C-atom), 109.8 (s, C-6), 106.1 (s, C-8), 54.8 (s, C-atom of OCH₃). EI-MS m/z (%): 411 (M⁺, 100), 136 (17), 91 (10). Anal. Calcd for C₁₈H₁₂N₂O₃: C, 73.16; H, 4.42; N, 6.83. Found: C, 73.11; H, 4.39; N, 6.80(%).

7-Hydroxy-3-[4, 5-di(o-chlorophenyl)imidazol-2-yl]chromone **3f**. Yield 78 %, mp 231 °C (ethanol), IR (KBr) ν cm⁻¹: 3443 (OH), 2999 (N-H), 1624 (C=O), 1452 (C=N), 1166 (C-O-C). ¹H NMR (DMSO- $d_{\rm c}$) $\delta_{\rm H}$ ppm: 11.9 (s, 1'-H, N-H), 7.52 (s, 2-H, CH), 6.41-7.45 (m, 11H, Ar-H), 4.96 (s, 1H, -OH). ¹³C NMR (DMSO-*d*₆) $δ_{\rm c}$ ppm: 176.1 (s, C-4, C=O), 164.7 (s, C-7), 159.9 (s, C-2), 159.1 (s, C-9), 136.7 (s, C-5'), 132.0 (s, C-5), 129.9 (s, C-2', C-3'), 125.0-135.1 (aromatic 12C-atom), 118.1 (s, C-3), 117.2 (s, C-10), 109.9 (s, C-6), 104.6 (s, C-8). EI-MS *m/z* (%): 450 (M⁺, 100), 136 (25), 91 (26). Anal. Calcd for C₂₄H₁₆N₂O₃: C, 64.16; H, 3.14; N, 6.24. Found: C, 64.12; H, 3.11; N, 6.22(%).

7-Hydroxy-3-[4, 5-di(p-chlorophenyl)imidazol-2-yl]chromone **3g.** Yield 83 %, mp 280 °C (ethanol). IR (KBr) v cm⁻¹: 3449 (OH), 2994 (N-H), 1629 (C=O), 1465 (C=N), 1054 (C-O-C). ¹H NMR (DMSO- $d_{\rm c}$) $\delta_{\rm H}$ ppm: 11.2 (s, 1'-H, N-H), 7.43 (s, 2-H, CH), 6.35-7.40 (m, 11H, Ar-H), 4.90 (s, 1H, -OH). ¹³C NMR (DMSO- $d_{\rm c}$) $\delta_{\rm c}$ ppm: 176.9 (s, C-4, C=O), 164.1 (s, C-7), 160.1 (s, C-2), 159.6 (s, C-9), 137.0 (s, C-5'), 132.7 (s, C-5), 130.1 (s, C-2', C-3'), 124.6-135.5 (aromatic 12C-atom), 118.6 (s, C-3), 117.8 (s, C-10), 109.1 (s, C-6), 104.9 (s, C-8). EI-MS *m/z* (%): 450 (M⁺, 100), 136 (29), 91 (36). Anal. Calcd for C₂₄H₁₆N₂O₃: C, 64.16; H, 3.14; N, 6.24. Found: C, 64.10; H, 3.04; N, 6.16(%).

7-Hydroxy-3-[4,5-di(p-N,N-dimethylaminophenyl)imidazol-2-yl]-chromone **3h**. Yield 73 %, mp 278 °C (chloroform + dioxane). IR (KBr) v cm⁻¹: 3433 (OH), 2989 (N-H), 1639 (C=O), 1443 (C=N), 1123 (C-O-C). ¹H NMR (DMSO-d₆) $\delta_{\rm H}$ ppm: 11.8 (s, 1'-H, N-H), 7.23 (s, 2-H, CH), 6.51-7.49 (m, 11H, Ar-H), 4.96 (s, 1H, -OH), 2.88 (s, 6H, N(CH₃)₂), 2.79 (s, 6H, N(CH₃)₂). ¹³C NMR (DMSO-d₆) $\delta_{\rm C}$ ppm: 176.2 (s, C-4, C=O), 164.5 (s, C-7), 160.7 (s, C-2), 160.1 (s, C-9), 137.5 (s, C-5'), 132.1 (s, C-5), 130.7 (s, C-2', C-3'), 124.0-136.1 (aromatic 12C-atom), 118.2 (s, C-3), 117.1 (s, C-10), 109.8 (s, C-6), 105.2 (s, C-8), 40.1 (s, N(CH₃)₂), 40.7 (s, N(CH₃)₂). Anal. Calcd for C₂₈H₂₆N₄O₃: C, 72.09; H, 5.02; N, 12.01. Found: C, 72.01; H, 4.96; N, 11.92(%).

7-Hydroxy-3-[4,5-di(p-methylphenyl)imidazol-2-yl]chromone **3i.** Yield 82 %, mp 290 °C (chloroform + dioxane). IR (KBr) v cm⁻¹: 3441 (OH), 2988 (N-H), 1652 (C=O), 1439 (C=N), 1099 (C-O-C). ¹H NMR (DMSO- d_6) $\delta_{\rm H}$ ppm: 11.6 (s, 1'-H, N-H), 7.36 (s, 2-H, CH), 6.29-7.49 (m, 11H, Ar-H), 4.92 (s, 1H, -OH), 2.29 (s, 3H, CH₃), 2.25 (s, 3H, CH₃); ¹³C NMR (DMSO- d_6) $\delta_{\rm C}$ ppm: 175.3 (s, C-4, C=O), 164.0 (s, C-7), 160.4 (s, C-2), 159.1 (s, C-9), 137.6 (s, C-5'), 132.2 (s, C-5), 130.4 (s, C-2', C-3'), 119.7-135.9 (aromatic 12C-atom), 118.2 (s, C-3), 117.1 (s, C-10), 109.8 (s, C-6), 104.1 (s, C-8), 24.0 (s, C-atom of CH₃), 23.7 (s, C-atom of CH₃). Anal. Calcd for C₂₆H₂₀N₂O₃: C, 76.45; H, 4.94; N, 6.86. Found: C, 76.36; H, 4.85; N, 6.77(%).

General procedure for the synthesis of compounds 4a-i. In a 250 ml round-bottomed flask, anhydrous K_2CO_3 (6.3 mmol) was added to the mixture of dry DMF (9 ml) and acetone (6 ml), then 7-hydroxy-3-(4,5-disubstituted imidazol-2-yl)-chromones **3a-i** (0.30 mmol), DTMAB (10 mg) and α -acetobromoglucose (0.60 mmol) were added under stirring, the reaction mixture was refluxed for 5-6 h (monitored by TLC). Then acetone was removed under vacuum, water (20 ml) was added to the flask. The mixture was extracted with ethyl acetate (5×10 ml), the organic layer was washed by 20 ml water and brine, dried over anhydrous MgSO₄, then removed the solvent to give the residue which was purified by silica gel flash chromatography (ethyl acetate: petroleum ether 1:2 v/v) to give a brown coloured semisolid.

7-(2,3,4,6-Tetra-o-acetyl-o-β-D-glucopyranosyloxy)-3-(imidazol-2-yl)-chromone **4a.** Yield 86 %, $[\alpha]_{D}^{25} = -3.1$ (c 0.1, CH₃OH). IR (KBr) v cm⁻¹: 2954 (N-H), 2854 (glucosidic-CH), 1761 (C=O of *O*-acetyl gps of glycone moiety), 1722 (C=O), 1646 (C=N), 1052 (C-O-C). ¹H NMR (DMSO- d_{6}) δ_{H} ppm: 12.5 (s, 1'-H, N-H), 7.46 (s, 2-H, CH), 7.15 (d, 2'-H, 3'-H) (CH), 6.44-7.43 (m, 3H, Ar-H), 4.87-5.00 (m, 3H, 2", 3", 4"-H), 4.76 (d, 1H, 1"-H, anomeric proton), 4.39 (dd, 1H, 5"-H), 3.86-4.24 (m, 2H, 6"-H), 2.01, 1.95, 1.99, 2.05 (s, 3H, OAc). ¹³C NMR (DMSO- d_{6}) δ_{c} ppm: 174.9 (C-4, C=O), 171.0 (C-atoms of acetyl C=O), 164.2 (C-7), 159.1 (C-2), 158.1 (C-9), 135.9 (C-5'), 130.9 (C-5), 128.0 (C-2', C-3'), 117.6 (C-3), 116.2 (C-10), 110.1 (C-6), 103.4 (C-8), 101.9 (C-1", anomeric C-atom), 74.9 (C-5"), 72.8 (C-2"), 71.5 (C-4"), 71.1 (C-3"), 66.1 (C-6"), 21.8 (C-atom, CH₃ of acetyl group). EI-MS m/z (%): 559 (M⁺, 17), 228 (100), 136 (12), 91 (25). Anal. Calcd for $C_{26}H_{28}O_{12}N_2$: C, 55.91; H, 4.69; N, 5.02. Found: C, 55.89; H, 4.66; N, 5.00(%).

7-(2,3,4,6-Tetra-0-acetyl-0-β-D-glucopyranosyloxy)-3-(4,5dimethylimidazol-2-yl)-chromone 4b. Yield 76 %, $[\alpha]_{D}^{25} = -5.1$ (c 0.1, CH₂OH). IR (KBr) v cm⁻¹: 2935.1 (N-H), 2882 (glucosidic-CH), 1758 (C=O of o-acetyl gps of glycone moiety), 1727 (C=O), 1624 (C=N), 1055 (C-O-C). ¹H NMR (DMSO-*d*₆) δ_H ppm: 12.9 (s, 1'-H, N-H), 7.48 (s, 2-H, CH), 6.49-7.49 (m, 3H, Ar-H), 4.85-5.04 (m, 3H, 2", 3", 4"-H), 4.71 (d, 1H, 1"-H, anomeric proton), 4.40 (dd, 1H, 5"-H), 3.90-4.21 (m, 2H, 6"-H), 2.34 (s, 2'-H, CH₃), 2.24 (s, 3'-H, CH₂), 2.02, 1.96, 1.98, 2.04 (s, 3H, OAc). ¹³C NMR $(DMSO-d_6) \delta_C ppm: 176.0 (C-4, C=O), 170.5 (C-atoms of acetyl)$ C=O), 164.7 (C-7), 159.0 (C-2), 158.0 (C-9), 135.7 (C-5'), 132.1 (C-2', C-3'), 130.8 (C-5), 117.8 (C-3), 115.1 (C-10), 108.1 (C-6), 104.1 (C-8), 102.8 (C-1", anomeric C-atom), 75.5 (C-5"), 72.2 (C-2"), 71.5 (C-3"), 71.0 (C-4"), 66.0 (C-6"), 20.9 (C-atom, CH, of acetyl group), 11.4 (CH, of C-2', C-3'); EI-MS m/z (%): 587 (M⁺, 11), 256 (100), 136 (21), 91 (25). Anal. Calcd for C₂₈H₂₂N₂O₁₂: C, 57.34; H, 5.16; N, 4.78. Found: C, 57.31; H, 5.16; N, 4.75(%).

7-(2,3,4,6-Tetra-0-acetyl-0-β-D-glucopyranosyloxy)-3-(4phenylimidazol-2-yl)-chromone 4c. Yield 88 %, $\left[\alpha\right]_{D}^{25} = -1.5$ (c 0.1, CH₃OH). IR (KBr) v cm⁻¹: 2924 (N-H), 2854 (glucosidic-CH), 1758 (C=O of o-acetyl gps of glycone moiety), 1729 (C=O), 1621 (C=N), 1037 (C-O-C), 689 (benzene monosubstituted). ¹H NMR (DMSO-*d*₆) δ_H ppm: 12.5 (s, 1'-H, NH), 7.50 (s, 2-H, CH), 7.09 (s, 2'-H, CH), 6.41-7.60 (m, 8H, Ar-H), 4.84-4.99 (m, 3H, 2", 3", 4"-H), 4.79 (1H, d, 1"-H, anomeric proton), 4.45 (1H, dd, 5"-H), 3.81-4.25 (m, 2H, 6"-H), 2.02, 1.94, 1.96, 2.01 (s, 3H, OAc). ¹³C NMR (DMSO- d_6) δ_c ppm: 176.2 (C-4, C=O), 169.9 (C-atoms of acetyl C=O), 163.8 (C-7), 158.9 (C-2), 158.0 (C-9), 139.9 (C-3'), 135.5 (C-5'), 127.5-133.5 (aromatic 6C-atom), 131.5 (C-5), 119.9 (C-2'), 117.8 (C-3), 114.8 (C-10), 109.4 (C-6), 104.1 (C-8), 101.9 (C-1", anomeric C-atom), 75.4 (C-5"), 72.1 (C-2"), 71.7 (C-3"), 71.5 (C-4"), 66.1 (C-6"), 22.0 (C-atom, CH₃ of acetyl group). EI-MS m/z (%): 634 (M⁺, 20), 304 (100), 136 (16), 91 (29). Anal. Calcd for C₃₃H₃₂O₁₂N₂: C, 60.57; H, 4.77; N, 4.41. Found: C, 60.54; H, 4.76; N, 4.36(%).

7-(2,3,4,6-Tetra-0-acetyl-0-β-D-glucopyranosyloxy)-3-(4,5diphenylimidazol-2-yl)-chromone 4d. Yield 80 %, $[\alpha]_{D}^{25} = -1.9$ (c 0.1, CH₂OH). IR (KBr) v cm⁻¹: 2945 (N-H), 2855 (glucosidic-CH), 1754 (C=O of o-acetyl gps of glycone moiety), 1722 (C=O), 1646 (C=N), 1055 (C-O-C), 689 (benzene monosubstituted). ¹H NMR (DMSO- d_6) δ_H ppm: 12.8 (s, 1'-H, N-H), 7.61 (s, 2-H, CH), 6.38-7.75 (m, 13H, Ar-H), 4.86-5.02 (m, 3H, 2", 3", 4"-H), 4.79 (d, 1H, 1"-H, anomeric proton), 4.41 (dd, 1H, 5"-H), 3.89-4.29 (m, 2H, 6"-H), 2.02, 1.91, 1.99, 2.00 (s, 3H, OAc). ¹³C NMR (DMSO d_6) δ_C ppm: 175.8 (C-4, C=O), 171.0 (C-atoms of acetyl C=O), 164.1 (C-7), 160.2 (C-2), 157.1 (C-9), 135.9 (C-5'), 131.6 (C-5), 129.5 (C-2', C-3'), 128-133 (aromatic 6C-atom), 118.6 (C-3), 116.0 (C-10), 109.9 (C-6), 104.3 (C-8), 102.9 (C-1", anomeric C-atom), 75.4 (C-5"), 72.1 (C-2"), 71.3 (C-4"), 71.2 (C-3"), 66.1 (C-6"), 20.7 (C-atom, CH, of acetyl group). EI-MS m/z (%): 711 (M⁺, 14), 379 (100), 136 (11), 91 (29). Anal. Calcd for $C_{38}H_{36}N_2O_{12}$: C, 64.22; H, 4.82; N, 3.94. Found: C, 64.19; H, 4.80; N, 3.90(%).

7-(2,3,4,6-Tetra-o-acetyl-o-β-D-glucopyranosyloxy)-3-[4phenyl,5-(p-methoxyphenyl)imidazol-2-yl]-chromone **4e**. Yield 89 %, $[α]_{D}^{25}$ = -1.5 (c 0.1, CH₃OH). IR (KBr) v cm⁻¹: 2957 (N-H), 2857 (glucosidic-CH), 1776 (C=O of o-acetyl gps of glycone moiety), 1718 (C=O), 1645 (C=N), 1091 (C-O-C). ¹H NMR (DMSO-d₆) $\delta_{\rm H}$ ppm: 12.7 (s, 1'-H, N-H), 7.49 (s, 2-H, CH), 6.37-7.51 (m, 12H, Ar-H), 4.84-5.05 (m, 3H, 2", 3", 4"-H), 4.78 (d, 1H, 1"-H, anomeric proton), 4.41 (dd, 1H, 5"-H), 3.87-4.29 (m, 2H, 6"-H), 3.71 (s, 3H, OCH₃), 2.01, 2.00, 1.97, 2.01 (s, 3H, OAc). ¹³C NMR (DMSO- d_6) δ_c ppm: 174.8 (C-4, C=O), 170.0 (C-atoms of acetyl C=O), 164.1 (C-7), 158.7 (C-2), 157.5 (C-9), 135.4 (C-5'), 131.0 (C-5), 128.9 (C-2', C-3'), 118.9 (C-3), 115.9 (C-10), 114.5-164.5 (aromatic 12C-atom), 109.7 (C-6), 103.1 (C-8), 101.9 (C-1", anomeric C-atom), 75.1 (C-5"), 71.9 (C-2"), 71.3 (C-3"), 71.1 (C-4"), 66.1 (C-6"), 56.1 (C-atom of OCH₃), 21.4 (C-atom, CH₃ of acetyl group). EI-MS *m*/*z* (%): 741 (M⁺, 21), 410 (100), 136 (11), 91 (29). Anal. Calcd for C₃₉H₃₈N₂O₁₃: C, 63.24; H, 4.90; N, 3.78. Found: C, 63.21; H, 4.89; N, 3.77(%).

7-(2,3,4,6-Tetra-0-acetyl-0-β-D-glucopyranosyloxy)-3-[4,5di(o-chlorophenyl)imidazol-2-yl]-chromone 4f. Yield 75 %, [α] $_{\rm D}^{25}$ = - 2.4 (c 0.1, CH₃OH). IR (KBr) v cm⁻¹: 2935 (N-H), 2859 (glucosidic-CH), 1768 (C=O of o-acetyl gps of glycone moiety), 1717 (C=O), 1631 (C=N), 1074 (C-O-C). ¹H NMR (DMSO-*d*₆) δ_μ ppm: 12.1 (s, 1'-H, N-H), 7.49 (s, 2-H, CH), 6.44-7.41 (m, 11H, Ar-H), 4.81-4.99 (m, 3H, 2", 3", 4"-H), 4.77 (d, 1H, 1"-H, anomeric proton), 4.41 (dd, 1H, 5"-H), 3.84-4.20 (m, 2H, 6"-H), 2.00, 2.01, 1.98, 2.04 (s, 3H, OAc). ¹³C NMR (DMSO- d_6) δ_C ppm: 175.1 (C-4, C=O), 171.0 (C-atoms of acetyl C=O), 163.7 (C-7), 159.0 (C-2), 158.2 (C-9), 135.8 (C-5'), 131.6 (C-5), 128.9 (C-2', C-3'), 125-135 (aromatic 12C-atom), 119.0 (C-3), 115.8 (C-10), 109.8 (C-6), 103.4 (C-8), 101.7 (C-1", anomeric C-atom), 74.9 (C-5"), 73.1 (C-2"), 71.4 (C-3"), 71.1 (C-4"), 66.0 (C-6"), 21.4 (C-atom, CH₂ of acetyl group). EI-MS m/z (%): 780 (M⁺, 18), 449 (100), 136 (27), 91 (19). Anal. Calcd for C₃₈H₃₄N₂O₁₂Cl₂: C, 58.55; H, 4.14; N, 3.59. Found: C, 58.49; H, 4.07; N, 3.52(%).

7-(2,3,4,6-Tetra-o-acetyl-o-β-D-glucopyranosyloxy)-3-[4,5di(p-chlorophenyl)imidazol-2-yl]-chromone 4g. Yield 83 %, [α] $_{\rm D}^{25}$ = - 4.7 (c 0.1, CH₃OH). IR (KBr) v cm⁻¹: 2975 (N-H), 2861 (glucosidic-CH), 1725 (C=O of o-acetyl gps of glycone moiety), 1700 (C=O), 1614 (C=N), 1094 (C-O-C). ¹H NMR (DMSO-*d*₆) δ₁₁ ppm: 11.8 (s, 1'-H, N-H), 7.41 (s, 2-H, CH), 6.41-7.49 (m, 11H, Ar-H), 4.78-4.98 (m, 3H, 2", 3", 4"-H), 4.87 (d, 1H, 1"-H, anomeric proton), 4.45 (dd, 1H, 5"-H), 3.81-4.26 (m, 2H, 6"-H), 2.01, 2.02, 1.97, 2.03 (s, 3H, OAc). ¹³C NMR (DMSO-*d_s*) δ_c ppm: 175.5 (C-4, C=O), 171.8 (C-atoms of acetyl C=O), 163.1 (C-7), 159.7 (C-2), 158.8 (C-9), 135.1 (C-5'), 131.2 (C-5), 129.3 (C-2', C-3'), 125.7-135.9 (aromatic 12C-atom), 119.2 (C-3), 115.1 (C-10), 109.6 (C-6), 103.9 (C-8), 101.1 (C-1", anomeric C-atom), 75.2 (C-5"), 73.6 (C-2"), 71.3 (C-3"), 70.2 (C-4"), 66.3 (C-6"), 21.1 (C-atom, CH, of acetyl group). EI-MS m/z (%): 780 (M+, 23), 449 (100), 136 (33), 91 (25). Anal. Calcd for C₃₈H₃₄N₂O₁₂Cl₂: C, 58.55; H, 4.14; N, 3.59. Found: C, 58.47; H, 4.07; N, 3.51(%).

 $7-(2,3,4,6-Tetra-o-acetyl-o-\beta-D-glucopyranosyloxy)-3-[4,5$ di(N,N-dimethylaminophenyl)imidazol-2-yl]-chromone 4h. Yield 80 %, $[\alpha]_{D}^{25} = -3.2$ (c 0.1, CH₃OH). IR (KBr) v cm⁻¹: 2989 (N-H), 2867 (glucosidic-CH), 1729 (C=O of o-acetyl gps of glycone moiety), 1705 (C=O), 1623 (C=N), 1110 (C-O-C). ¹H NMR (DMSO-*d*₆) δ_μ ppm: 11.7 (s, 1'-H, N-H), 7.44 (s, 2-H, CH), 6.46-7.41 (m, 11H, Ar-H), 4.72-4.96 (m, 3H, 2", 3", 4"-H), 4.89 (d, 1H, 1"-H, anomeric proton), 4.48 (dd, 1H, 5"-H), 3.86-4.29 (m, 2H, 6"-H), 2.83 (s, 6H, N(CH₂)₂), 2.76 (s, 6H, N(CH₂)₂), 1.98, 2.01, 2.04, 2.00 (s, 3H, OAc). ¹³C NMR (DMSO- d_6) δ_C ppm: 175.1 (C-4, C=O), 171.3 (C-atoms of acetyl C=O), 163.4 (C-7), 159.2 (C-2), 158.2 (C-9), 135.7 (C-5'), 131.0 (C-5), 129.0 (C-2', C-3'), 125.1-135.4 (aromatic 12C-atom), 119.1 (C-3), 115.8 (C-10), 109.3 (C-6), 103.3 (C-8), 101.7 (C-1", anomeric C-atom), 75.7 (C-5"), 73.9 (C-2"), 71.4 (C-3"), 70.8 (C-4"), 66.5 (C-6"), 40.5 (N(CH₃)₂), 40.2 (N(CH₃)₂), 21.3 (C-atom, CH₃ of acetyl group). Anal. Calcd for $C_{42}H_{44}N_4O_{12}$: C, 63.31; H, 5.57; N, 7.03. Found: C, 63.22; H, 5.50; N, 6.97(%).

7-(2,3,4,6-Tetra-o-acetyl-o-β-D-glucopyranosyloxy)-3-[4,5di-(p-methylphenyl)imidazol-2-yl]-chromone **4i**. Yield 85%, $[\alpha]_{D}^{25}$ = -2.9 (c 0.1, CH₃OH). IR (KBr) v cm⁻¹: 2979 (N-H), 2860 (glucosidic-CH), 1733 (C=O of o-acetyl gps of glycone moiety), 1712 (C=O), 1621 (C=N), 1098 (C-O-C). ¹H NMR (DMSO-d₆) δ_{H} ppm: 11.3 (s, 1'-H, N-H), 7.45 (s, 2-H, CH), 6.36-7.55 (m, 11H, Ar-H), 4.72-4.97 (m, 3H, 2", 3", 4"-H), 4.88 (d, 1H, 1"-H, anomeric proton), 4.49 (dd, 1H, 5"-H), 3.80-4.29 (m, 2H, 6"-H), 2.23 (s, 3H, CH₃), 2.20 (s, 3H, CH₃), 2.01, 2.02, 1.99, 2.03 (s, 3H, OAc). ¹³C NMR (DMSO- d_6) δ_c ppm: 175.0 (C-4, C=O), 171.1 (C-atoms of acetyl C=O), 163.4 (C-7), 159.2 (C-2), 158.6 (C-9), 135.9 (C-5'), 131.7 (C-5), 129.0 (C-2', C-3'), 125.1-135.4 (aromatic 12C-atom), 119.8 (C-3), 115.8 (C-10), 109.2 (C-6), 103.4 (C-8), 101.8 (C-1", anomeric C-atom), 75.7 (C-5"), 73.1 (C-2"), 71.9 (C-3"), 70.5 (C-4"), 66.8 (C-6"), 24.6 (C-atom of CH₃), 23.8 (C-atom of CH₃), 21.9 (C-atom, CH₃ of acetyl group). Anal. Calcd for C₄₀H₃₈N₂O₁₂: C, 65.03; H, 5.18; N, 3.79. Found: C, 64.91; H, 5.11; N, 3.71(%).

General procedure for the preparation of compounds **5a-i.** The mixture of 2,3,4,6-tetra-*o*-acetyl-7-*o*- β -*D*-glucopyranosyloxy-3-(4,5-disubstituted imidazol-2-yl)-chromones **4a-i** (0.109 mmol), dry methanol (2 ml) and anhydrous zinc acetate (0.126 mmol) was refluxed for 7-9 h (monitored by TLC). After cooled down at room temperature, it was filtered through cation exchanged resin; the solvent was removed under vacuum. The residue was purified by silica gel chromatography (CHCl₃, MeOH, 12:1 v/v) to get titled compound.

7-*o*-β-*D*-*Glucopyranosyloxy-3-(imidazol-2-yl)-chromone* **5a.** Yield 90 %, $[\alpha]_D^{25} = -9.1$ (*c* 0.1, CH₃OH). IR (KBr) v cm⁻¹: 3412 (br, OH peak of carbohydrate residue), 2929 (N-H), 2853 (glucosidic-CH), 1599 (C=O), 1445 (C=N), 1089 (C-O-C). ¹H NMR (DMSO-*d*₆) $\delta_{\rm H}$ ppm: 12.7 (s, 1'-H, N-H), 7.51 (s, 2-H, CH), 7.06 (d, 2'-H, 3'-H) (CH), 6.37-7.55 (m, 3H, Ar-H), 5.74 (d, 1"-H, anomeric proton), 3.44-4.72 (m, 6H, β-*D*-glucopyranosyl ring). ¹³C NMR (DMSO-*d*₆) $\delta_{\rm C}$ ppm: 174.7 (C-4, C=O), 163.8 (C-7), 159.6 (C-2), 158.1 (C-9), 136.1 (C-5'), 130.8 (C-5), 127.8 (C-2', C-3'), 118.2 (C-3), 116.2 (C-10), 109.9 (C-6), 106.0 (C-1", anomeric C-atom), 104.0 (C-8), 82.1 (C-5"), 77.6 (C-3"), 74.9 (C-2"), 73.1 (C-4"), 64.0 (C-6"). EI-MS *m/z* (%): 391 ([M+1]⁺, 10), 228 (100), 136 (15), 91 (25). Anal. Calcd for C₁₈H₁₆N₂O₈: C, 55.39; H, 4.65; N, 7.18. Found: C, 55.35; H, 4.66; N, 7.16(%).

7-*o*-β-*D*-Glucopyranosyloxy-3-(4,5-dimethylimidazol-2-yl)chromone **5b**. Yield 91 %, $[\alpha]_D^{25} = -10.1$ (*c* 0.1, CH₃OH). IR (KBr) v cm⁻¹: 3446 (br, OH peak of carbohydrate residue), 2958 (N-H), 2856 (glucosidic-CH), 1598 (C=O), 1414 (C=N), 1092 (C-O-C); ¹H NMR (DMSO-*d*₆) $\delta_{\rm H}$ ppm: 13.2 (s, 1'-H, N-H), 7.56 (s, 2-H, CH), 6.41-7.49 (m, 3H, Ar-H), 5.69 (d, 1"-H, anomeric proton), 3.45-4.95 (m, 6H, β-*D*-glucopyranosyl ring), 2.34 (s, 2'-H, CH₃), 2.19 (s, 3'-H, CH₃). ¹³C NMR (DMSO-*d*₆) $\delta_{\rm C}$ ppm: 176.0 (C-4, C=O), 163.5 (C-7), 159.6 (C-2), 158.1 (C-9), 135.6 (C-5'), 132.1 (C-2',C-3'), 131.1 (C-5), 118.0 (C-3), 115.1 (C-10), 109.3 (C-6), 105.0 (C-1", anomeric C-atom), 103.5 (C-8), 81.1 (C-5"), 77.7 (C-3"), 75.9 (C-2"), 73.0 (C-4"), 65.8 (C-6"), 11.9 (CH₃ of C-2', C-3'). EI-MS *m/z* (%): 419 ([M+1]⁺, 7), 256 (100), 163 (18), 136 (28), 91 (16). Anal. Calcd for C₂₀H₂₀N₂O₈: C, 57.41; H, 5.30; N, 6.70. Found: C, 57.37; H, 5.27; N, 6.67(%).

 $7-0-\beta$ -D-Glucopyranosyloxy-3-(4-phenylimidazol-2-yl)*chromone* 5*c*. Yield 96 %, $[\alpha]_{D}^{25} = -15.5$ (*c* 0.1, DMSO). IR (KBr) v cm⁻¹: 3400 (br, OH peak of carbohydrate residue), 2925 (N-H), 2854 (glucosidic-CH), 1592 (C=O), 1404 (C=N), 1071 (C-O-C), 689 (benzene monosubstituted). ¹H NMR (DMSO- d_6) $\delta_{\rm H}$ ppm: 12.7 (s, 1'-H, NH), 7.48 (s, 2-H, CH), 7.11 (s, 2'-H, CH), 6.43-8.08 (m, 8H, Ar-H), 5.85 (d, 1"-H, anomeric proton), 3.41-4.70 (m, 6H, β-Dglucopyranosyl ring). ¹³C NMR (DMSO- d_6) δ_C ppm: 176.2 (C-4, C=O), 164.7 (C-7), 159.1 (C-2), 157.7 (C-9), 140.1 (C-3'), 136.4 (C-5'), 131.0 (C-5), 127.0-133.5 (aromatic 6C-atom), 121.4 (C-2'), 119.4 (C-3), 114.9 (C-10), 109.1 (C-6), 105.4 (C-1", anomeric C-atom), 103.1 (C-8), 81.2 (C-5"), 77.0 (C-3"), 75.1 (C-2"), 73.9 (C-4"), 65.7 (C-6"). EI-MS *m/z* (%): 467 ([M+1]⁺, 4), 304 (100), 227 (20), 163 (21), 136 (18), 91 (30), 77 (18). Anal. Calcd for C₂₄H₂₀N₂O₈: C, 60.57; H, 4.77; N, 4.41. Found: C, 60.54; H, 4.76; N, 4.36(%).

7-*o*-β-*D*-Glucopyranosyloxy-3-(4,5-diphenylimidazol-2-yl)chromone 5d. Yield 92 %, $[\alpha]_D^{25} = -11.9$ (*c* 0.1, DMSO). IR (KBr) v cm⁻¹: 3428 (br, OH peak of carbohydrate residue), 2929 (N-H), 2858 (glucosidic-CH), 1597 (C=O), 1429 (C=N), 1100 (C-O-C). ¹H NMR (DMSO- d_6) $\delta_{\rm H}$ ppm: 11.8 (s, 1'-H, N-H), 7.59 (s, 2-H, CH), 6.50-7.75 (m, 13H, Ar-H), 5.80 (d, 1"-H, anomeric proton), 3.43-4.78 (m, 6H, β-*D*-glucopyranosyl ring). ¹³C NMR (DMSO- d_6) $\delta_{\rm C}$ ppm: 176.1 (C-4, C=O), 164.5 (C-7), 160.2 (C-2), 157.1 (C-9), 136.5 (C-5'), 130.9 (C-5), 129.6 (C-2', C-3'), 127.4-133.9 (aromatic 6C-atom), 118.9 (C-3), 115.1 (C-10), 109.5 (C-6), 106.2 (C-1", anomeric C-atom), 104.1 (C-8), 81.4 (C-5"), 77.2 (C-3"), 75.2 (C-2"), 73.9 (C-4"), 64.9 (C-6"). EI-MS *m/z* (%): 542 (M⁺, 9), 379 (100), 227 (11), 163 (41), 136 (19), 91 (21), 77 (20). Anal. Calcd for C₃₀H₂₄N₂O₈: C, 64.22; H, 4.82; N, 3.94. Found: C, 64.19; H, 4.80; N, 3.90(%).

7-*o*-β-*D*-*G*luc *o p y a n o s y l o y*-3-[4-*p* hen *y*], 5-(*p*-methoxyphenyl)imidazol-2-*y*]-chromone **5e**. Yield 89 %, $[\alpha]_{D}^{25}$ = - 9.8 (*c* 0.1, DMSO). IR (KBr) v cm⁻¹: 3411 (br, OH peak of carbohydrate residue), 2944 (N-H), 2856 (glucosidic-CH), 1593 (C=O), 1415 (C=N), 1099 (C-O-C). ¹H NMR (DMSO-d₆) δ_{H} ppm: 12.9 (s, 1'-H, N-H), 7.51 (s, 2-H, CH), 6.39-7.48 (m, 12H, Ar-H), 5.54 (d, 1"-H, anomeric proton), 3.45-4.78 (m, 6H, β-*D*-glucopyranosyl ring), 3.70 (s, 3H, OCH₃). ¹³C NMR (DMSO-d₆) δ_{C} ppm: 176.1 (C-4, C=O) 163.8 (C-7), 158.8 (C-2), 157.4 (C-9), 136.1 (C-5'), 131.4 (C-5), 129.1 (C-2', C-3'), 118.1 (C-3), 115.3 (C-10), 115-164 (aromatic 12C-atom), 110.1 (C-6), 106.1 (C-1", anomeric C-atom), 103.5 (C-8), 81.1 (C-5"), 78.1 (C-3"), 74.7 (C-2"), 73.1 (C-4"), 64.6 (C-6"), 56.0 (C-atom of OCH₃). EI-MS *m/z* (%): 573 ([M+1]⁺, 11), 410 (100), 163 (29), 91 (19). Anal. Calcd for C₃₁H₂₆N₂O₈: C, 63.03; H, 4.93; N, 4.89. Found: C, 65.01; H, 4.94; N, 4.88(%).

7-*o*-β-*D*-*Glucopyranosyloxy*-3-[4,5-*di*(*o*-*chlorophenyl*) *imidazol*-2-*yl*]-*chromone* **5f**. Yield 85 %, $[\alpha]_D^{25} = -12.4$ (*c* 0.1, DMSO). IR (KBr) v cm⁻¹: 3454 (br, OH peak of carbohydrate residue), 2928 (N-H), 2852 (glucosidic-CH), 1591 (C=O), 1420 (C=N), 1095 (C-O-C). ¹H NMR (DMSO-*d*₆) $\delta_{\rm H}$ ppm: 12.6 (s, 1'-H, N-H), 7.55 (s, 2-H, CH), 6.40-7.51 (m, 11H, Ar-H), 5.68 (d, 1"-H, anomeric proton), 3.41-4.74 (m, 6H, β-*D*-glucopyranosyl ring). ¹³C NMR (DMSO-*d*₆) $\delta_{\rm C}$ ppm: 176.1 (C-4, C=O), 165.1 (C-7), 159.0 (C-2), 158.2 (C-9), 135.6 (C-5'), 130.9 (C-5), 129.0 (C-2', C-3'), 126.5-134.5 (aromatic 12C-atom), 117.8 (C-3), 115.1 (C-10), 109.9 (C-6), 106.2 (C-1", anomeric C-atom), 104.3 (C-8), 82.4 (C-5"), 77.2 (C-3"), 75.8 (C-2"), 73.1 (C-4"), 64.1 (C-6"). EI-MS *m/z* (%): 612 ([M+1]⁺, 9), 449 (100), 163 (19), 91 (23). Anal. Calcd for C₃₀H₂₄N₂O₈Cl₂: C, 58.93; H, 3.96; N, 4.58. Found: C, 58.90; H, 3.95; N, 4.55(%).

7-*o*-β-*D*-*Glucopyranosyloxy-3-[4,5-di(p-chlorophenyl)* imidazol-2-yl]-chromone **5g.** Yield 83 %, $[\alpha]_D^{25} = -13.1$ (c 0.1, DMSO). IR (KBr) v cm⁻¹: 3336 (br, OH peak of carbohydrate residue), 2988 (N-H), 2852 (glucosidic-CH), 1645 (C=O), 1443 (C=N), 1099 (C-O-C). ¹H NMR (DMSO-*d*₆) $\delta_{\rm H}$ ppm: 11.9 (s, 1'-H, N-H), 7.50 (s, 2-H, CH), 6.33-7.55 (m, 11H, Ar-H), 5.78 (d, 1"-H, anomeric proton), 3.45-4.75 (m, 6H, β-D-glucopyranosyl ring). ¹³C NMR (DMSO-*d*₆) $\delta_{\rm C}$ ppm: 176.3 (C-4, C=O), 165.3 (C-7), 159.6 (C-2), 158.8 (C-9), 135.1 (C-5'), 130.3 (C-5), 129.4 (C-2', C-3'), 126.2-134.4 (aromatic 12C-atom), 117.4 (C-3), 115.7 (C-10), 109.4 (C-6), 106.8 (C-1", anomeric C-atom), 104.9 (C-8), 82.2 (C-5"), 77.5 (C-3"), 75.2 (C-2"), 73.6 (C-4"), 64.8 (C-6"). EI-MS *m/z* (%): 612 ([M+1]⁺, 14), 449 (100), 163 (23), 91 (34). Anal. Calcd for C₃₀H₂₄N₂O₈Cl₂: C, 58.93; H, 3.96; N, 4.58. Found: C, 58.85; H, 3.90; N, 4.51(%).

7-*o*-β-*D*-*Glucopyranosyloxy*-3-[4,5-*di*(*N*,*N*-*dimethylaminophenyl*)*imidazol*-2-*yl*]-*chromone* **5h**. Yield 91 %, $[\alpha]_{D}^{25} = -9.2$ (*c* 0.1, DMSO). IR (KBr) v cm⁻¹: 3345 (br, OH peak of carbohydrate residue), 2967 (N-H), 2859 (glucosidic-CH), 1634 (C=O), 1432 (C=N), 1150 (C-O-C). ¹H NMR (DMSO-*d*₆) $\delta_{\rm H}$ ppm: 11.7 (s, 1'-H, N-H), 7.50 (s, 2-H, CH), 6.45-7.56 (m, 11H, Ar-H), 5.71 (d, 1"-H,

anomeric proton), 3.35-4.74 (m, 6H, β -*D*-glucopyranosyl ring), 2.87 (s, 6H, N(CH₃)₂), 2.81 (s, 6H, N(CH₃)₂). ¹³C NMR (DMSO-d₆) $\delta_{\rm C}$ ppm: 176.3 (C-4, C=O), 165.5 (C-7), 158.6 (C-2), 158.6 (C-9), 135.1 (C-5'), 130.5 (C-5), 129.3 (C-2', C-3'), 125.2-136.3 (aromatic 12C-atom), 117.2 (C-3), 115.8 (C-10), 110.2 (C-6), 106.7 (C-1", anomeric C-atom), 104.6 (C-8), 82.9 (C-5"), 77.9 (C-3"), 75.3 (C-2"), 73.7 (C-4"), 64.6 (C-6"), 40.7 (N(CH₃)₂), 40.1 (N(CH₃)₂). Anal. Calcd for C₃₄H₃₆N₄O₈: C, 64.96; H, 5.77; N, 8.91. Found: C, 64.85; H, 5.69; N, 8.82(%).

7-*o*-β-*D*-*Glucopyranosyloxy-3*-[4,5-*di*(*p*-*methylphenyl*)*imidazol-2-yl*]-*chromone* **5i**. Yield 96 %, $[\alpha]_D^{25} = -11.1$ (*c* 0.1, DMSO). IR (KBr) v cm⁻¹: 3234 (br, OH peak of carbohydrate residue), 2985 (N-H), 2857 (glucosidic-CH), 1672 (C=O), 1443 (C=N), 1096 (C-O-C). ¹H NMR (DMSO-*d*₆) $\delta_{\rm H}$ ppm: 12.2 (s, 1'-H, N-H), 7.59 (s, 2-H, CH), 6.37-7.45 (m, 11H, Ar-H), 5.79 (d, 1"-H, anomeric proton), 3.45-4.79 (m, 6H, β-D-glucopyranosyl ring), 2.28 (s, 3H, CH₃), 2.18 (s, 3H, CH₃). ¹³C NMR (DMSO-*d*₆) $\delta_{\rm C}$ ppm: 176.5 (C-4, C=O), 165.4 (C-7), 159.3 (C-2), 158.9 (C-9), 135.2 (C-5'), 130.4 (C-5), 129.9 (C-2', C-3'), 126-134.5 (aromatic 12C-atom), 117.2 (C-3), 115.6 (C-10), 109.3 (C-6), 106.8 (C-1", anomeric C-atom), 104.7 (C-8), 82.1 (C-5"), 77.7 (C-3"), 75.4 (C-2"), 73.6 (C-4"), 64.8 (C-6"), 24.2 (C-atom of CH₃), 23.3 (C-atom of CH₃). Anal. Calcd for C₃₂H₃₀N₂O₈: C, 67.36; H, 5.30; N, 4.91. Found: C, 67.25; H, 5.21; N, 4.81(%).

Results and Discussion

Our synthetic pathway is outlined in Scheme 1. During the course of our present research work, the starting compound 7-hydroxy-3-formyl chromone 1 was prepared by Vilsmeier-Haack reaction from resacetophenone.[25,27] The condensation of 1 with various 1,2-dicarbonyl compounds 2 in the presence of anhydrous CH₂COONH₄ in glacial acetic acid undergoes cyclisation results in the formation of 7-hydroxy-3-(4,5disubstituted imidazol-2-yl)-4H-chromen-4-ones^[28] (3a-i). The IR spectrum of **3a** showed a broad peak at 3400 cm⁻¹ due to the OH stretch; the peak at 3064 cm⁻¹ was appeared due to N-H stretch; a strong absorption at 1622 cm⁻¹ was assigned to C=O stretch; the peaks at 1455 and 1171 cm⁻¹ were due to C=N and C-O-C stretches respectively. The ¹H NMR spectrum exhibited three singlets at δ 5.12, 7.26, and 12.9 which readily recognised as arising from OH, C-H, and N-H respectively. The characteristic multiplets for the aromatic protons are located at $\delta = 6.40-7.49$. The ¹³C NMR spectrum of **3a** showed 12 distinctive resonances in agreement with the proposed structure. The potassium salts of **3a-i** for *o*-glucosydation were prepared by the action of anhydrous K₂CO₃ in the mixture of DMF and acetone (3:2 v/v) as a solvent. An interaction between the potassium salt and α -acetobromoglucose as glucosyl donor in the presence of dodecyltrimethylammonium bromide (DTMAB) as a phase transfer catalyst. This gives rise 2,3,4,6-tetra-*o*-acetyl-β-*D*-glucopyranosyloxy-3-(4,5disubstituted imidazol-2-yl)-4H-chromen-4-ones 4a-i. The absence of IR band in 4a due to OH stretch at 3400 cm⁻¹ is indicating the formation of product. Further, the peaks at 3056 and 2924 cm⁻¹ were due to the C-H and N-H stretches respectively. The C=O stretch peak was found to be shifted to 1729 cm⁻¹. A strong absorption at 1757 cm⁻¹ was assigned to C=O stretch of *o*-acetyl groups of glucose moiety. The peaks at 1621 and 1037 cm⁻¹ were attributed to the C=N and C-O-C stretches respectively. A sharp peak at 2853 cm⁻¹ was assigned to glucosidic C-H stretch. The 1H NMR spectrum exhibited

Scheme 1. Synthesis of 7- σ - β -D-glucopyranosyloxy-3-(4, 5-disubstituted imidazol-2-yl)-4*H*-chromen-4-ones **5**. Reagents: (a) CH₃COONH₄, CH₃COOH; (b) K₂CO₃, DMF, (CH₃)₂CO; (c) DTMAB, α -acetobromoglucose; (d) Zn(CH₃COO)₂, MeOH.

signals at δ 12.5 (s, 1'-H, N-H), 7.46 (s, 2-H, CH), 7.15 (d, 2'-H, 3'-H) (CH), 6.44-7.43 (m, 3H, Ar-H), 4.87-5.00 (m, 3H, 2", 3", 4"-H), 4.76 (d, 1H, 1"-H, anomeric proton), 4.39 (dd, 1H, 5"-H), 3.86-4.24 (m, 2H, 6"-H), 2.01, 1.95, 1.99, 2.05 (s, 3H, OAc). Similarly, ¹³C data of the acetylated β -glucosides (4a-i) were in agreement with the assigned structures.

We tried to deacetylate of 4a-i by standard procedure using NaOMe/MeOH;^[29] however, we found that the strong basic condition resulted in cleavage of the isoflavone's C-ring, while the anhydrous zinc acetate in absolute methanol system led to significant deglycosylation. Finally, complete deacetylation of 4a-i was achieved by using anhydrous zinc acetate in absolute methanol yielded corresponding $O-\beta$ -D-glucosides **5a-i** in good yields. The IR spectrum of 5a showed the presence of characteristic absorption peaks at 3412, 2929, 2853, 1599, 1445, and 1089 due to OH of carbohydrate residue, N-H, glucosidic C-H, C=O, C=N, and ether linkage respectively. The ¹H NMR data showed the presence of carbohydrate moiety. The chemical shift of the anomeric proton show β -linkage at δ 5.74 (C-H) indicating the linkage of carbohydrate unit to C-7 position of the aglycone. The compounds gave satisfactory C, H and N analysis. The mass spectrum of **5a** displayed the molecular ion peak $[M+1]^+$ at m/z = 391, which is consistent with its proposed structure.

Conclusions

In conclusion we have synthesized the newly synthesized glucosides of 7-hydroxy-3-(4,5-disubstituted imidazol-2-yl)-4*H*-chromen-4-ones with promising yield. Acknowledgments. The authors are thankful to the Director, SAIF, Chandigarh and the Head, Department of Chemistry, IIT-Pawai, Mumbai for providing necessary spectral analysis and the Head, Department of Chemistry, R T M Nagpur University, Nagpur for providing necessary laboratory facilities.

References

- 1. Nicolaou K.C., Mitchell H.J. Angew. Chem. Int. Ed. 2001, 40, 1576.
- 2. Sears P., Wong C-H. Chem. Commun. 1998, 1161.
- 3. Varki A. Glycobiology 1993, 3, 97.
- 4. Hakomori S-I. Acta. Anat. 1998, 161, 79.
- 5. Rademacher T.W., Parekh R.B., Dwek R.A. *Glycobiology*. *Annu. Rev. Biochem.* **1988**, *57*, 785.
- Varki A., Cummings R. *Essentials of Glycobiology*. Cold Spring Harbor Laboratory Press, Plainview, NY, 1999.
- Giannis A. Angew. Chem. 1994, 106, 188; Angew. Chem. Int. Ed. Engl. 1994, 33, 178.
- 8. Karlsson K.A. Trends. Pharmaco. Sci. 1991, 12, 265.
- 9. Hart G.W. Cur. Opin. Cell. Biol. Sci. 1992, 4, 1017.
- 10. Gagneau P., Varki A. Glycobiology 1999, 9, 747.
- 11. Feizi T., Childs R.A. Trends Biochem. Sci. 1985, 10, 24.
- 12. Birt D.F., Hendrich S., Wang W. Pharmaco. Ther. 2001, 90, 157.
- 13. Lopez-Lazaro M. Cur. Med. Chem. Anti-Cancer Agents 2002, 2, 691.
- Pouget C., Lauthier F., Simon A., Fagnere C., Basly J.-P., Delage C., Chulia A.-J. *Bioorg. Med. Chem. Lett.* 2001, *11*, 3095.
- Zheng X., Meng W.D., Xu Y.Y., Cao J.G., Qing F.L. *Bioorg. Med. Chem. Lett.* 2003, 13, 881.

Synthesis of Glucosides of Hydroxy-3-(4-R,5-R'-imidazol-2-yl)-4H-chromen-4-ones

- 16. Gobbi S., Rampa A., Bisi A., Belluti F., Piazzi L., Valenti P., Caputo A., Zampiron A., Carrara M. *J. Med. Chem.* **2003**, *46*, 662.
- 17. Atassi G., Briet P., Berthelon J.J., Collonges F. Eur. J. Med. Chem. Chim. Ther. 1985, 20, 393.
- Yu D., Chen C.H., Brossi A., Lee K.H. J. Med. Chem. 2004, 47, 4072.
- Hu C., Chen K., Shi Q., Kilkuskie R.E., Chen Y., Lee K.H. J. Nat. Prod. 1994, 57, 42.
- 20. Ungwitayatorn J., Samee W., Pimthon J. J. Mol. Struct. 2004, 689, 99.
- 21. Burda S., Oleszek W. J. Agric. Food. Chem. 2001, 49, 2774.
- Rackova L., Firakova S., Kostalova D., Stefek M., Sturdik E., Majekova M. *Bioorg. Med. Chem.* 2005, 13, 6477.
- 23. Soobrattee M.A., Neergheen V.S., Luximon-Ramma A., Aruoma O.I., Bahorun T. *Mutat. Res.* **2005**, *579*, 200.
- Elks J., Ganellin C.R. Dictionary of Drugs (Chemical data, structure and bibliographies), Chapman and Hall, Scientific data division, London, 1990.
- a) Ingle V.N., Hatzade K.M., Taile V.S., Gaidhane P.K., Kharche S.T. J. Carbohydrate Chem. 2007, 26(2), 107-123;
 b) Hatzade K.M., Taile V.S., Gaidhane P.K., Haldar A.G.M., Ingle V.N. Indian J. Chem. 2008, 47B, 1260-1270; c) Hatzade K.M., Taile V.S., Gaidhane P.K., Umare V.D., Haldar A.G.M., Ingle V.N. Indian J. Chem. 2009, 48B, 1548; d) Hatzade K.M., Taile V.S., Gaidhane P.K., Ingle V.N. Turkish J. Chem. 2010, 34, 241.
- Furniss B.S., Hannaford A.N., Smith P.G., Tatechell A.R. Vogel's Textbook of Practical Organic Chemistry, 5th Ed.; EL/ BS, Longman, London. 1989, 807.
- a) Nohara A., Umetani T., Sanmo Y. *Tetrahedron Lett.* 1974, 30, 3553; b) Lacova M., Loos D., Furdikl M., Matulova M., El-Shaaer Hafez M. *Synth. Molecules* 1998, 3, 149.
- 28. Grimmett M.R. *Imidazole and Benzimidazole Synthesis*. Academic Press, London. **1997**, 151.
- 29. Lewis P., Haltia S., Wahala K. J. Chem. Soc. Perkins Trans 1 1998, 16, 2481.

Received 16.10.2012 Accepted 21.12.2012