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In this paper, we propose a new definition of models applicability domain (AD) based on the selection of sufficient
portion of individual QSPR models to be accepted for property prediction. Efficiency of this approach has been
demonstrated in ensemble modeling of the stability constants logK of the 1:1 complexes of 17 lanthanide and transition
metal ions (M) with various organic ligands (L) in water. The individual linear models based on substructural molecular
fragment (SMF) descriptors were validated in 5-fold cross-validation procedure. Each test set compound was a subject
of two previously developed ADs: fragment control and bounding box. After that, predictions for a given compound
were considered reliable if the number of accepted models were larger than user defined portion of the total amount
of selected individual models, otherwise the compound was discarded from the modeling. Application of this rule -
“Quorum Control” — resulted in significant increase predictive performance of consensus models.

Keywords: Complexes with metal ions, organic ligands, QSPR modeling, stability constants, models applicability
domain, multiple linear regression analysis, substructural molecular fragments.
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Ipeonooiceno nosoe onpedenenue obracmu npumerumocmu mooenet (AD), ochosannoe Ha bl00pe 00CMamoyHo nopyuu
unousudyanvhvix QSPR modenetl, umobvl 6blmv npunsmulmu 075 nPpedcKazanust ceoticmsa. Dphexmuenocms 3moeo
nooxX00a NPOOEMOHCMPUPOBAHA 6 UCHOTb308AHUU AHCAMONS MOOeNell CIMPYKMYpPa - CE0UCMEO OISl OYEHKU KOHCIMAHM
yemouueocmu logK,, komnnexcoe 17 kamuonoé 1anmanudos u nepexoouvix memaniosé (M) c pasnoobpasnvimu
opeanuveckumu aueanoamu (L) 6 eode. Ilpoenocmuueckas cnocob6HOCmb UHOUBUOYAILHBIX JUHEUHBIX MOOeell Ha
OCHOBe CYOCMPYKMYPHbIX MONEKVIAPHBIX (PPASMEHMO8 NPoepeHa npoyedypoli 6HeUIHe20 NAMUKPAMHO20 CKONb3Ue20
KOHmMpos. JIisi Kajicoo2o mecmupyemMoeo COeOUHeHUsi NPUMEHAIUCL panee paspabomanuvie memoovi AD: koHmpons
HOBbIX YpacMenmos u 2panuy Yucia exodxcoenull gopazmenma. 3amem npedckazanue 0Jist OAHHO20 COCOUHEHUS CHUMANLOCh
HAOEJICHBIM, eCU YUCTIO NPUHAMBIX Mooenell ObL10 6oNbue 3a0aHHOL NOMb306aAMeNeM HACMIL 8CeX UCTONb3YEMbIX
UHOUBUOYATILHBIX MOOETell;, UHaYe COeOUHEHUe UCKIIUALOCh U3 MOOenuposanus. Pesyivmamom npumeneHus 5moeo
npaeuna “Keopym KOHmMpons” Obllo CYUECMEEHHOE YEEeNUteHUe NPOSHOCMUYECKOU CHOCOOHOCMU KOHCEHCYC MOOeTEl.

KunioueBble ciioBa: MeTamsiOKOMIUIEKCHI, oprannueckue guranab, QSPR MonennpoBanue, KOHCTaHThI YCTOMYUBOCTH,
00MacTh MPUMEHUMOCTH MOJEJICH, MHOKCCTBCHHBIM JIMHCHHBIH pPErpeCCHOHHBIN aHaju3, CyOCTPYKTypHBIC
MOJICKYJISIPHBIC (DparMeHTHI.
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Introduction

Binding of metal ions by organic ligands in solutions
plays an important role in various workflows in industry('
and biological processes.*”! Many efforts were done to
design the ligands that selectively bind a given metal ion and
allow to separate metal ions.[®*! At present, a large amount
of known experimental data concerning stability constants of
metal-ligand complexes has been collected.!'>2!! This opens
an opportunity to develop quantitative structure - property
relationships (QSPR) linking the stability constants with the
structure of ligands which, in turn, can be used for computer-
aided design of new metal binders.?> 2!

To date, QSPR modeling of stability constants
of the metal — ligand complexation was performed for
alkali,**? alkaline-earth,?>*® rare-earth™-**! and transition
metal?33436374043-4351 jong. In many cases the practical
application of the reported QSPR is complicated due to the
lack of complete information about descriptors’ calculations
and details of machine-learning method implementation.
In order to overcome this problem, we have developed the
COMET (COmplexation of METals) software®! which
implements previously elaborated QSPR models of stability
constants (logK) of the 1:1 (M:L) complexes of diverse
organic ligands with alkaline-earth (Sr*",*%! Ca*, Ba*,
Mg?3), lanthanide (Ce*', Pr**, Nd*, Sm*", Eu*", Gd*', Tb*",
Dy**, Ho*, Er*", Tm*, Yb*, Lu*")*! and transition metal
ions (Ag" M Zn*", Cd** and Hg?",! Mn*, Fe*", Y3', La*,
Pb**, and UO,*™) in water at 298 K and an ionic strength
0.1 M. All these models are based on substructural molecular
fragments (SMF)?33%31 representing a subtype of the ISIDA
descriptors.[*! SMF are subgraphs of molecular graph!*°+7
whereas fragment occurrences are descriptor values. SMF
descriptors are calculated solely from 2D chemical structures.
It has been demonstrated that prediction performance of the
models built on SMF is, at least, as good as that for the models
involving molecular descriptors of different types,**->"! E-state
counts and E-state indices™”! and pharmacophore descriptors.
B In our studies for alkaline-earth?®*! and some heavy metal
ions,™®I the root-mean squared error (RMSE) of predictions
is comparable with experimental systematic errors.!'”! For
lanthanide ions,?*? Ag* 4% Zn**, Cd*", and Hg>*,>) RMSE of
predictions of the logK values varies more widely: from 1.7
to 1.9 for transition metals and from 1.0 - 1.9 (0.5 < logK <
10) to 2.5 - 3.7 (logK > 10) for lanthanides.

There are two possible reasons of relatively poor
prediction performance of the models. The first one is related
to relatively poor quality of experimental data collected
from various sources: logK values reported for the same
equilibrium by different authors may differ.'> Another
reason could be related to some methodological problems:
choice of descriptors, machine-learning methods and models
applicability domain (AD). In this paper, we focus on the AD
issue. We propose a new AD definition —“quorum control”
— which significantly improves predictive performance.
The efficiency of this approach has been demonstrated on
previously studied datasets for metal complexation.

Here we report new QSPR ensemble models for the
stability constant logK of the 1:1 (M:L) complexes of 13
lanthanide (Ce*', Pr**, Nd**, Sm*, Eu*, Gd*", Tb*, Dy*,
Ho*, Er*", Tm*, Yb*, Lu*") and 4 transition (Ag®, Zn?*,
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Cd*, Hg*") metal ions with sets of diverse organic molecules
in aqueous solution at 298 K and an ionic strength 0.1 M.
The models have been validated by external 5-fold cross-
validation procedure. The root mean squared error (RMSE)
of predictions is similar to systematic errors in experimental
data. Thisis twice smaller compared to earlier reported models
for which “quorum control” AD has not been applied.

Methods

Data Sets

The experimental stability constant (logK) values for the 1:1
(M:L) complexes of lanthanide (Ce**, Pr**, Nd**, Sm**, Eu**, Gd*,
Tb**, Dy*', Ho*, Er¥", Tm*', Yb*', Lu*") and transition (Ag", Zn*,
Cd*, Hg*") metal ions with diverse organic ligands in water were
selected from the IUPAC Stability Constants Database (SC DB)
(version 5.33, Academic Software)!'™) at standard temperature 298
K and an ionic strength /= 0.1 M. Some logK values (around 15 %)
were corrected to specified temperature and an ionic strength using
the procedures included in SC DB.

2D structures of ligands, names of metal ions and
corresponding logK values resulted from searching in SC DB were
converted into Structure - Data Files (SDF) served as an input in
the MLR module of the ISIDA (In Silico Design and Data Analysis)
/QSPR program.®¥ The data manager EdiSDF?*43 was used to
prepare data sets containing finally from 52 (Hg*") to 568 (Zn*")
organic ligands (Figure 1). The logK values vary in the ranges from
0.6 — 1.8 to 17.9 — 24.7 (lanthanide ions), from 0.6 to 8.7 (Ag"),
from 0.1 to 21.3 (Zn*", Cd*") and from 4.9 to 28.5 (Hg*").

Number of ligands

500 - .
17 metal ions

400 - 952 organic ligands u
2632 logK values

300 ~

200 A

B LT

Ce3+ Nd3+ Eu3+ b3+ H03+ Lu3+ Zn2+ ng+
Pr3+ sm3+ Gd3+ Dy3+ Er3+ Yb 3+ Ag Cd2+

Figure 1. The number of ligands in individual datasets used in
QSPR modeling of logK.

If several values of the stability constant logK were available
for a particular ligand (Table 1), for selections we followed the
recommendations of IUPAC;! in some cases the most recent data
or the data consistent with respect to different experimental methods
were chosen. It should be noted that discrepancies in experimental
logK values reported for the same equilibrium by different authors
may attain rather high values (till 2.3 logK unites, see Table 1).

Studied molecules include crown-ethers, thia-, and aza-
crowns with neutral and acidic lariat groups, cryptands; derivatives
of carboxylic and polycarboxylic acids; polyamines, (thio)ethers,
various amino acids and aminocarboxylates; derivatives of
phosphonous, (di)phosphoric, (di)phosphonic and phosphinic acids;
cyclic and acyclic polydentate ligands with the terminal carboxy and
phosphoryl groups separated by various cyclic or acyclic spacers;
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QSPR Modeling of Metal Complexation

Table 1. The logK values for the 1:1 (M:L) complexes of several studied ligands with lanthanide ions in water at temperature 298 K and an
ionic strength 0.1 M. The demonstration of a discrepancy in the experimental logK values.

ligand metal ion logk ref. ligand metal ion logk ref.
O _OH
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various (di)sulfonic acids; ternary amines with phosphono and
carboxy groups; mono- and dipodands of ternary amines; amide,
phenol, glucose, imidazole, adenosine, inosine, uridine, uracil,
cytidine, thymidine, thymidine, adenine and guanosine derivatives;
pyridines; purine, phenanthroline, hydrazide derivatives, etc.

Descriptors

SMEF23:305472] a5 subgraphs of molecular graphs of the
ligands were used as descriptors in QSPR models. Molecules were
represented with implicit hydrogen atoms. Two classes of the SMF

L. O _1
a b

C-0-C=0 C-[41=0
C-0-C C-[31-C
c-0 C-[2]-0
0-C=0 0-[3]1=0
c-0 C-[2]-0
C=0 C=[2]=0

Figure 2. Two classes of SMF: shortest topological paths with
explicit representation of atoms and bonds (a), and terminal groups
as shortest paths defined by length and explicit identification

of terminal atoms and bonds (b). The SMF types IAB(2-4) and
IAB(2-4)t are shown.
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descriptors were generated: shortest topological paths with explicit
representation of atoms and bonds, and terminal groups as shortest
paths but defined by length and explicit identification of terminal
atoms and bonds>334] (Figure 2).

Single, double and triple bonds were considered different
in acyclic and cyclic non-aromatic motifs. For every class of the
sequences, the minimal (2 <n_ <4) and maximal (6 <n, < 15)
numbers of constituent atoms are defined. The sequences include
all intermediate shortest paths with n atoms: n,, <n<n_ .60 types
of the sequences of two classes have been generated varying the
values of nand n_ . SMF descriptors of each particular type
were used as an initial descriptors’ pool in QSPR modeling to build

several QSPR models using different variable selection technique.

Models Building and Validation

QSPR modeling was performed using Multiple Linear
Regression Analysis (MLR) of the ISIDA/QSPR program®
(Figure 3) with combined forward and backward stepwise variable
selection techniques.?3¢346731 MLR is applied to build linear
relationships between independent variables (SMF descriptors: X, i
=1, 2,...) and a dependent variable (here target property ¥ = logK):
Y=c,+ ZcX, where every descriptor value (SMF count x, j = 1,
2,...,0; here 7 is the number of ligands) is associated with observed
property value (v, j =1, 2,..., n), c, is descriptor contribution, and
¢, is the 1ndependent term Wthh is omitted in a part of models. The
Slngular Value Decomposition method is used to fit contributions
¢, and to minimize the sum of squared residuals which are squared
differences between the property values calculated by the model
O eatd) and observed values (y,, ) in the training set. The program
can generate more than 25 000 MLR models; each of them
corresponds to particular type of the SMF descriptors and MLR
equation (¢, = 0 or ¢, # 0) and applied variable selection technique.
Here, three sub-algorithms FVS-1, FVS-2 and FVS-3 for forward
stepwise variable selection B3 and the algorithm for backward
stepwise variable selection® have been applied. The efficiency
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of the FVS procedure was compared with an implementation of
Genetic AlgorithmB5" on the QSPR modeling of antifilarial and
different types of anti-HIV activities. The results show similar
predictive performance of computationally expensive GA-based
approaches and FVS calculations. The leave-one-out (LOO) cross—
validation correlation coefficient Q served as a criterion of model
selection: the acceptable models were characterized by 0° > 0.5.

The logK values were predicted by consensus models
(CMs). One consensus model combines predictions issued from a
multitude of individual models originated from different types of
the SMF descriptors and variable selection algorithms, 3283573741
Thus for every compound from the test set, the farget property is
computed as an arithmetic mean of values obtained by individual
models excluding those leading to outlying values according to
Tompson’s rule. If a test compound is identified as being outside
an applicability domain (AD) of individual model, the prediction by
given model for a given compound is not included in CM.

In order to validate CM, the external 5-fold cross validation
(5-CV) was applied.“*™ 1In this procedure, an entire dataset
is divided in 5 non-overlapping pairs of training and test sets.
Predictions are prepared for all molecules (n) of the initial dataset,
since each of them belongs to one of the test sets. The descriptor
selection and model acceptance procedures were performed only
on the training folds. Predictive performance of CM has been
estimated using coefficient of determination (R ) and root-mean
squared error (RMSE) for a combination of all five test sets

n u v
Rg =1- ;(Yexp,i =Yt )2/; (YeXpJ - <Y>EXP)

" 12
RMSE = |:Z(Yexp,i - Ypred,i )z/n:|

where Yexp and Ypred are, respectively, experimental and predicted
values of the stability constant logK.

Models Applicability Domain Definitions

Ensemble of three approaches for model AD has been applied.
Two of them - Bounding Box and Fragment Control — have been
reported earlier.*®! The bounding box method considers as AD a

7 = " o
S 1S1DA/QS PR: Quentitative Structure - Propesty Modelling by Sulssiruchial Molec ular Fragrmen.. (5| )
[/ File Tools Compute Cancel Window Help [=[=]x
‘E TRAINING STAGE RUN BATCH b
I |

AVERAGE PREDICTED vs EXPERIMENTAL PROPERTY for TEST SET
¥ predict
1.88E+01 1
1.86E+01
1.35E+1 [~ y
a :
E o

1.03E+01 3l
T19E+00 Fe

el
404E-00 |- &,

& =0.9400; MAE= 7.492E-001; RMSEabs = 1.002E+000

Y = 0.086(0.076) + 0.969(0.010)%; N= 562; R2 = 0.9424; F =9155.1; 5 = 0|9895;
BREH 2 I L L L 1 1
3.20E-0% 3.69E+00 T.0SE+00 1.04E+01 1.38E+01 1.72E+01 2.05E+01
¥ exp.

[Exp. ¥ = 22.160; Predict. Y= 8901; DY = 13.259

Figure 3. The interface of the ISIDA/QSPR program shows
predicted versus experimental logK: highlighted ligand for selected
data point for the Zn** complexation.
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multi-dimension descriptor space confined by minimal and maximal
values of counts of SMF descriptors involved in an individual
model. Fragment control rejects a prediction for a test compound
containing SMF fragments which don’t occur in the initial SMF
pool generated for the training set.?33343

Here, we introduce “Quorum Control”, a new AD definition
which discards a test compound if CM includes less than n o o
of the total number of selected individual models (“no consensus
without quorum”). Here n_ = 15 - 20 % was used. Application of the
“Quorum Control” AD results in discarding from the initial dataset
molecules containing “rare” fragments, e.g., occurring in less than 3
molecules. Another speaking, this new AD withdraws the molecules
with statistically insignificant fragments. The role of the approach
is to discard the molecules for which predictions are considered
as unreliable. This leads to iterative CMs building with reduction
of the modeling sets in 1.5 - 2 times. Finally, 952 organic ligands
and 2632 logK values were involved in the modeling. Separately,
this includes 17 datasets of 103 (Ce*), 149 (Pr¥), 141 (Nd*), 161
(Sm*), 128 (Eu*), 168 (Gd*), 81 (Tb*"), 107 (Dy*"), 112 (Ho*),
94 (Er*), 73 (Tm*), 99 (Yb*), 92 (Lu*"), 88 (Ag"), 568 (Zn*), 416
(Cd?*") and 52 (Hg*") organic ligands (Figure 1).

Results and Discussion

1800 individual structure - property models were built
for every metal ion in 5-CV procedure, only the most robust
models (0> 0.5) were selected to include in CMs. Obtained
CMs demonstrate a reasonable predictive ability of logK in
5-CV procedure: RMSE values vary from 0.52 (Ag") to 1.10
(Dy*) with the exception of 1.39 (Hg*") (Figures 4 and 5).
RMSE value is essentially higher for Hg?* than for the rest of
metal ions as a result of moderate data set of diverse ligands.
Squared determination coefficient R’ changes from 0.900
(Ag") to 0.977 (Gd*).

“Quorum Control” guided QSPR models perform
better than previously reported models!?*3*4%32 for all studied
metal ions. In whole, RMSE values of predictions obtained in
this work are twice lower than those for the earlier reported
models?*3%40521 (Figure 4) and they are close to experimental
systematic errors (see Table 1).

Different individual models involve several common
fragments whose contributions into logK for particular metal
slightly vary from one model to another one. For instance, in

RMSE

2.5 A

2.0 A

1.5 4

1.0 A

0.5 4

0.0 _Ce3+ Nd3+ Eu3+ Tb3+ Ho3+ Tm3+ Lu3+ Zn2+ ng+

Pr3+ Sm3+ Gd3+ Dy3+ Er3+ Yb 3+ Ag+ Cd2+
Figure 4. RMSE of the logK predictions obtained in 5-CV
procedure: this work (dark blue) and from refs>4°52! for

lanthanide ions,®? Ag®,* Zn?*, Cd?*", and Hg*"*! (blue).
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Figure 5. Predictive performance of the models built on 6 largest datasets for Pr’*, Nd**, Sm*", Gd**, Zn*', and Cd**. The plots show the
correlations between predicted (in 5-fold cross validation) versus experimental logK values.
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the complexes of lanthanide ions, shortest topological paths
0=C-C.N.C-C=0 of 2,6-dicarboxypiperidyl-N-cthanoic
acid, N-C-C=0 occurred in 2-aminoacids and different
acyclic and macrocyclic ligands with NCH,CO(OH)
group(s), C.C.0.C.C.N-C-P=0 in different aza-macrocycles
with CH,PO(OH), pendant group(s) contribute each about
2.5 logK units. (Here C.N, O.C, and C.C are fragments
with single bond in cycles). Information about molecular
moieties with high positive or negative contributions into
logK could be particularly useful for the design of new
metal binders.

Conclusions

In order to improve the predictive performance of
QSPR models prepared with the ISIDA QSPR program,
a new definition of models applicability domain (AD)
has been proposed. This approach is closely related to the
ensemble modeling technique in which many individual
models (instead of one sole) are generated for one training
set, followed by their application on the test set compounds.
Some of these individual models may not be accepted because
of the Bounding Box and Fragment Control AD approaches.
More models are discarded, smaller predictive performance
is expected. Thus, Quorum Control, a new AD definition
imposes a threshold for the acceptance rate of individual
models leading to reliable consensus.

Efficiency of this approach has been demonstrated in
ensemble modeling of the stability constants logK of the 1:1
complexes of 17 lanthanide and transition metal ions with
various organic ligands in water. The individual linear models
based on substructural molecular fragment descriptors were
validated in 5-fold cross-validation procedure. It has been
shown that application Quorum Control AD significantly
increases predicted performance of the models. Thus, the
root-mean squared error of predictions RMSE varies from
0.52 (Ag") to 1.39 (Hg?), which is similar to systematic
experimental errors.
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