Protonation Equilibriums of Porphin, 5,10,15,20–Tetraphenylporphin, 5,10,15,20–Tetrakis(4'–sulfonatophenyl)porphin in Methanol

Vladimir B. Sheinin,^{a@} Sergey A. Shabunin,^a Elena V. Bobritskaya^b, Tatiana A. Ageeva,^b and Oscar I. Koifman^{a,b}

^aG.A. Krestov Institute of Solution Chemistry of RAS, 153045 Ivanovo, Russia ^bIvanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia [@]Corresponding author E-mail: vbs@isc-ras.ru

The comparative investigation of substituent effects and media effects in relation to protonation equilibriums of porphyrinic platform (H_2P) in series of porphin, 5,10,15,20-tetraphenylporphin and 5,10,15,20-tetrakis(4'-sulfonatophenyl)-porphin was carried out by spectropotentiometric and computer chemistry (PM3) methods in methanol at 298 K. It was shown, that the receptor H_4P^{++} forms methanol solvatocomplexes $[H_4P^{++}](CH_3OH)$ like "roost" and $[H_4P^{++}](CH_3OH)_2$ like "double roost", but the equilibriums of the second protonation step of porphyrins practically are totally shifted to $[H_4P^{++}](CH_3OH)_2$. The appropriate step protonation and complexation constants were determined. It was determined, that media effects are the reason of the leveling of the step protonation constants of porphyrins, measured by spectrophotometric method, which "doesn't distinguish" the light-absorbing centers H_4P^{++} , $[H_4P^{++}](CH_3OH)$ and $[H_4P^{++}](CH_3OH)_2$.

Keywords: Tetras(sulfonatophenyl)porphin, protonation, pH-controlled receptor, J-aggregates.

Равновесия протонирования порфина, 5,10,15,20-тетрафенилпорфина и 5,10,15,20-тетракис-(4'-сульфонатофенил)порфина в метаноле

В. Б. Шейнин,^{а@} С. А. Шабунин,^а Е. В. Бобрицкая,^ь Т. А. Агеева,^ь О. И. Койфман^{а,ь}

^аИнститут химии растворов им. Г.А. Крестова РАН, 153045 Иваново, Россия ^bИвановский государственный химико-технологический университет, 153000 Иваново, Россия [@]E-mail: vbs@isc-ras.ru

Методами спектропотенциометрии и компьютерной химии (РМЗ) выполнено сравнительное исследование эффектов заместителей и эффектов среды в отношении равновесий протонирования порфириновой платформы (H_2P) в ряду порфин, 5,10,15,20-тетрафенилпорфин и 5,10,15,20-тетракис(4'-сульфонатофенил)порфин в метаноле при 298 К. Показано, что рецептор H_4P^{++} образует метанольные сольватокомплексы $[H_4P^{++}]$ (CH_3OH) типа "насест" и $[H_4P^{++}](CH_3OH)_2$ типа "двойной насест", но равновесия второй ступени протонирования практически полностью сдвинуты в сторону $[H_4P^{++}](CH_3OH)_2$. Определены соответствующие ступенчатые константы протонирования и комплексообразования. Установлено, что эффекты среды являются причиной нивелирования ступенчатых констант протонирования порфиринов, измеренных спектрофотометрическим методом, который "не различает" поглощающие центры H_4P^{++} , $[H_4P^{++}](CH_3OH)$ и $[H_4P^{++}](CH_3OH)_2$.

Ключевые слова: Тетра(сульфонатофенил)порфин, протонирование, рН-управляемый рецептор, Ј-агрегаты.

The formal equations, which are usually used for investigation of reaction of porphyrin protonation (1, 2) and other organic compounds, are equations of proton affinity and don't carry any information about medium effects.

$$H_2P + H^+ \xleftarrow{K_{b1}} H_3P^+$$
(1)

$$H_{3}P^{+} + H^{+} \xleftarrow{K_{b2}} H_{4}P^{++}$$

$$\tag{2}$$

Previously we have shown, that porphyrinic platform H_2P can be diprotonated forming H_4P^{++} receptor, which generates homogeneous 1:G:G and mixed 1:G₁:G₂ complexes like "double roost" (Figure 1) type with solvents hydrogen bond acceptors and anions as guests.^[1-5] The investigation of formation processes of solvatocomplexes $[H_4P^{++}]S$ and $[H_4P^{++}]S_2$ is complicated by the absence of H_4P^{++} optical response. We suppose, that in ionizing solvent the second protonation always starts instantaneous self-assembly of solvatocomplex $[H_4P^{++}]S_2$, which is the most stable particle in presence of indifferent acid anion (*e.g.* perchlorate or triflate).

Figure 1. [H₄P⁺⁺](H₂O)₂^[5]

These specific interactions, where the solvent plays the role of a reagent, influences on the result of H_2P protonation in the solvents of different composition. Previously we have shown, that formation of aquacomplex $[H_4P^{++}(PhSO_3^-)_4](H_2O)_2$ is one of the reasons for the synchronous diprotonation of this compound in water (IgK_{b1} and IgK_{b2} equal to 4.85 and 4.71, respectively).^[5] But the role of the substituents and other medium effects were not determined. Significance of this investigations

is determined by the fact, that zwitterions $H_4P^{++}(PhSO_3^-)_4$ are tectons for *pH*-controlled ionic self-assembly of porphyrinic *J*-aggregates and nanotubes on their basis, possessing interesting chemical, optical and electronic properties, which can be applied for developing the nanodevices.^[6]

The aim of this study was the comparative investigation of substitution effects and solvent effects in relation to protonation equilibrium H₂P in series of porphin (H₂Por), 5,10,15,20-tetraphenylporphin (H₂PPh₄) and 5,10,15,20tetrakis(4'-sulfonatophenyl)porphin in methanol. Methanol was chosen as the suitable solvent for this prophyrins and for potentiometry with glass p*H*-electrode.^[7] Besides, *J*-aggregates self-assemble from $[H_4P^{++}(PhSO_3^{-})_4](CH_3OH)_2$ sufficiently slowly in methanol, which allows to investigate the protonation equilibriums of $H_2P(PhSO_3^{-})_4$ with no complications, just like in water.

Experimental

Synthesis. Porphin (H₂Por), 5,10,15,20-tetraphenylporphin (H₂P(Ph)₄) and 5,10,15,20-tetrakis(4'-sulfophenyl)porphin (H₂P(PhSO₃H)₄) in the form of tetrahydrate of tetraammonium salt were obtained by the well-known methods.^[8-10]

Spectropotentiometry. The investigation of protonation equilibriums of H_2Por , $H_2P(Ph)_4$ and $H_2P(PhSO_3^{-})_4$ was carried out by spectropotentiometric method at 298 K.^[1,5] We add, that we used spectropotentiometric cell in 100 ml volume with optical path legth of 3.5 cm. The glass electrode was graduated in water buffer solutions by Equation 3 with a glance correction for proton activity coefficient in methanol.^[7,11]

$$pH_{\rm MeOH} = pH_{\rm H_2O} + 2.34 \tag{3}$$

The electronic absorption spectra were recorded by spectrophotometer AvaSpec-2048-2 (180-1100 nm).

Calculations. The protonation constants K_{b1} and K_{b2} were calculated by the method of fitting parameters in Equation 4^[12] using program SigmaPlot® software provided by Systat Software Inc. (SSI).

$$A_{\rm t} = \frac{A_{0(\rm H_2P)} + K_{\rm b1} \cdot 10^{\rm \cdot pH} \cdot A_{0(\rm H_3P^{+})} + K_{\rm b2} \cdot 10^{\rm \cdot 2pH} \cdot A_{0(\rm H_4P^{++})}}{1 + K_{\rm b1} \cdot 10^{\rm \cdot pH} + K_{\rm b2} \cdot 10^{\rm \cdot 2pH}}$$
(4)

SO₃H

SO₃H

Where A_{t} is the current value of solution absorbance on analytic wavelength; $A_{0(H_{2}P)}$, $A^{0}_{(H_{3}P^{+})}$ and $A^{0}_{(H_{4}P^{++})}$ are the component absorbance, corresponding to the analytical porphyrin concentration $(A^{0} = C^{0}_{H_{2}P} \cdot \varepsilon \cdot l)$.

H₂P(PhSO₃H)₄

Макрогетероциклы / Macroheterocycles 2012 5(3) 252-259

SO₃H

Protonation Equilibriums of Porphyrins in Methanol

The enthalpies of chemical reactions in the ideal hypothetical gas phase were calculated in terms of Hess law on the basis of PM3-formation enthalpies of reagents.

Results and Discussion

Porphyrin Protonation in Methanol

H₂**Por**. In methanol, only one protolytic Equilibrium 1 between light-absorbing centers H₂P and H₃P⁺ (Figure 2a,b) was found, which is confirmed by the single assemblage of isosbestic points at 362, 394, 447, 501 and 564 nm and by linear correlation between A^{t} of absorption bands in UV-Vis spectra (Figure 2e). The spectropotentiometric titration curve (Figure 2c) is single-step, and the relation $lg(C_{H_3P'}/C^{0}_{H_2P}) = n \cdot pH - lgK_{b1}$ (Figure 2d) is characterized by the constant of proportionality *n* (it determines the number of protons, added to H₂Por) exactly equal to one. The lgK_{b1} value for H₂Por in methanol is 3.59 ± 0.03 (Table 1).

 $H_2P(Ph)_4$. Phenyl substituents increase the basicity of the porphyrinic platform and shift the titration curve of

 Table 1. Conditional protonation constants of porphyrins in methanol.

Porphyrin	$\lg K_{\rm b1} \pm 0.03$	$lgK_{b2} \pm 0.03$	$\lg K_{b2} - \lg K_{b1}$
H ₂ Por	3.59		
$H_2P(Ph)_4$	4.77	2.87	-1.90
H ₂ P(PhSO ₃ ⁻) ₄	5.98	4.37	-1.61

 $H_2P(Ph)_4$ into the region of greater p*H* values (Figure 3d). Due to these facts, both protonation steps for $H_2P(Ph)_4$ can be observed in methanol. The first (1) and the second (2) protonation steps correspond to their own families of isosbestic points at 419, 494 and 523 nm $(H_2P(Ph)_4/H_3P(Ph)_4^+)$ and 367, 427, 447 and 621 nm $(H_3P(Ph)_4^+/[H_4P(Ph)_4^{++}](CH_3OH)_2)$ respectively, and to the line sections of correlation dependence $A^t_{412} = f(A^t_{435})$ (Figure 3c). The measured lgK_{b1} and lgK_{b2}^* values were 4.77±0.03 and 2.87±0.03, respectively (Table 1). The titration curve is characterized by the small difference lgK_{b2} - lgK_{b1} = -1.90, therefore it is smooth, and the maximum of $C_{H_3P(Ph)_4^+}$ is only 83% at pH 3.82 (Figure 3a,b).

Figure 2. Results of spectropotentiometric titration of H,Por by perchloric acid in methanol at 298 K: H,P (red), H,P⁺ (blue).

Макрогетероциклы / Macroheterocycles 2012 5(3) 252-259

5

1,9

1,8

1,7

1,6

1.5

0,0

6 7

R=0.99

000000

0,1

Absorbance, au (548 nm)

0,2

Figure 3. Results of spectropotentiometric titration of $H_2P(Ph)_4$ by perchloric acid in methanol at 298 K: H_2P (red), H_3P^+ (blue), $[H_4P^{++}]$ (CH₃OH)₂ (green).

 $H_{2}P(PhSO_{3})_{4}$. The protonation results of $H_{2}P(PhSO_{3})_{4}$ (Figure 4 a,c-e) and $H_2P(Ph)_4$ are similar, but sulfonate groups shift the titration curve into the region of greater pHvalues and decrease lgK_{b2} - lgK_{b1} from -1.90 down to -1.61 (Table 1). As a result, the maximum value of $C_{\rm H_3P^+}$ decreases to 77% (at pH=5.10). The first and the second protonation steps correspond to their own families of isosbestic points at 421, 484, 527 nm and 374, 430, 452, 620 nm, and to the two line sections on correlation dependence $A_{412}^t = f(A_{435}^t)$ (Figure 4c). Weak absorbance at 489 and 700 nm, which signalizes about the self-assembly of J-aggregates, appears only at the finish line of titration. We should note, that the more basic water eliminates K_{b1} and K_{b2} for $H_2P(PhSO_3)_4$ more than methanol. The transfer of Reactions 1 and 2 from methanol to water decreases the value $lgK_{b2}-K_{b1}$ for $H_2P(PhSO_3)_4$ down to 0.14.^[5]

Effects of Substituents and Media

The Equilibriums of I and II protonation steps of H_2P in methanol can be characterized by Equations 5-8 with regarding specific interactions of solvent with H_4P^{++} , H^+ and its self-

association, where the solvent is a reagent, with generating of solvatocomplexes $[H_4P^{++}]CH_3OH, [H_4P^{++}](CH_3OH)_2$, solvated protons $CH_3OH_2^{+}$ and dimers $(CH_3OH)_2^{[13]}$.

I protonation step

$$H_2P + CH_3OH_2^+ \xleftarrow{K_1} H_3P^+ + 0.5(CH_3OH)_2$$
 (5)

II protonation step

$$H_{3}P^{+} + CH_{3}OH_{2}^{+} \xleftarrow{\kappa_{2}} H_{4}P^{++} + 0.5(CH_{3}OH)_{2}$$
(6)

$$H_4P^{++} + 0.5(CH_3OH)_2 \xrightarrow{K_3} [H_4P^{++}](CH_3OH)$$
(7)

$$[H_4P^{++}](CH_3OH) + 0.5(CH_3OH)_2 \xleftarrow{\kappa_4} \\ [H_4P^{++}](CH_3OH)_2$$
(8)

$$\begin{array}{l} H_{3}P^{+} + CH_{3}OH_{2}^{+} + 0.5(CH_{3}OH)_{2} & \xleftarrow{K_{2}K_{3}K_{4}} \\ H_{4}P^{++}](CH_{3}OH)_{2} & (9) \end{array}$$

In this case, K_{b1} and K_{b2} , determined from the titration curve $A^{t_{\lambda}} = f(pH)$ by Equation 4, are conditional,^[14] because $K_{b1} = K_1/C_s$, $K_{b2} = K_2K_3K_4C_s$ (here C_s is the concentration Protonation Equilibriums of Porphyrins in Methanol

Figure 4. Results of spectropotentiometric titration of $H_2P(PhSO_3^-)_4$ by perchloric acid in methanol at 298 K: H_2P (red), H_3P^+ (blue), $[H_4P^{++}](CH_3OH)_2$ (green).

(activity) of solvent in solution). The value of $K_3K_4C_s^2$ is the measure of leveling effect of a solvent in relation to conditional constants K_{b1} and K_{b2} . The K_2 , K_3 and K_4 values can be measured only in the form of $K_2K_3K_4$, and C_s can be calculated by the formula: $C_s=1000 \text{ p/M}$, which shows, that the leveling effect C_s^2 of the certain solvent is determined by it's density and molecular mass.

In order to differentiate the substituents' effects and media effects in protonation reactions of porphyrins, we used the Equations 10 and 11 at 298 K.

$$\Delta_{s}G^{0} = \Delta_{a}G^{0} - \Delta_{tr}G^{0} \tag{10}$$

$$\Delta_{\rm s} G^0 = -1.3639 \cdot \lg K \tag{11}$$

Where $\Delta_s G^0$ and $\Delta_g G^0$ are the standard Gibbs energies of chemical reaction in solution and in absence of media in hypothetical ideal gas phase, respectively, and $\Delta_w G^0$ is the Gibbs energy of chemical reaction transfer into solution, K is the thermodynamic equilibrium constant.

In this case, $\Delta_g G^0$ is the measure of absolute (maximal) chemical affinity of the reagents, which depends only on

their molecular structure, and $\Delta_{tr}G^0$ is the measure of media effects, that reduce $\Delta_g G^0$. For I and II protonation steps of H₂P in methanol, the expressions 10, 11 are transformed to 12 and 13, respectively.

$$\Delta_{\rm s} G_{\rm I}^{\,0} = - \left({\rm PA}_{{\rm H}_2 {\rm P}} - {\rm PA}_{{\rm CH}_3 {\rm OH}} \right) + 0.5 \Delta_{\rm g} G_{\,\,({\rm CH}_3 {\rm OH})_2}^{\,0} - \Delta_{\rm tr} G_{\rm I}^{\,0} \qquad (12)$$

$$\Delta_{s}G_{II}^{0} = -(PA_{H_{3}P^{+}} - PA_{CH_{3}OH}) + 0.5\Delta_{g}G_{(CH_{3}OH)_{2}}^{0} + \Delta_{g}G_{3}^{0} + \Delta_{g}G_{4}^{0} - \Delta_{tr}G_{II}^{0}$$
(13)

Where PA_{H_2P} PA_{H_3P} and PA_{CH_3OH} make the proton affinity ($PA = -\Delta_g G^0_{298K}$), PA_{CH_3OH} , $\Delta_g G^0_{(CH_3OH)_2}$, $\Delta_g G_3^0$ and $\Delta_g G_4^0$ are contributions of specific interactions, $\Delta_{tr} G_1^0$ and $\Delta_{tr} G_{II}^0$ are the energies of reactions 5 and 9 transfer from gas phase into methanol.

Internal Substituent Effects

The internal^[10] (absolute) substituent effects in the absence of medium $\delta_R \Delta_{int} G^0_{b1}$ and $\delta_R \Delta_{int} G^0_{b2}$ can be calculated on the basis of PA_{H2P} and PA_{H3P}, which are the measure of maximal basicity of H₂P and H₃P⁺, or on the basis of

Table 2.	Internal	substituent	effects
Table 2.	Internal	substituent	effects

Basis R	R	$\Delta_{\rm g} H^0_{\ b1}$	$\Delta_{g}H^{0}_{b1} \qquad 4 \delta_{R}\Delta_{int}G^{0}_{b1}$		$\Delta_{\rm g} H^0_{\ b2}$ 4 δ		$_{\rm int}G^0_{\ b2}$
	K	kcal	/mol	%	kcal	/mol	%
H ₂ Por		-209.62			-135.61		
H ₂ P(Ph) ₄	-Ph	-213.99	-4.37	2.08%	-152.84	-17.23	12.71%
$H_2P(PhSO_3^-)_4$	-PhSO ₃ ⁻	-351.71	-142.09	67.78%	-295.83	-160.22	118.15%

appropriate enthalpies of $\Delta_g H^0_{b1}$ and $\Delta_g H^0_{b2}$ (the relation $\delta \Delta_g G^0 = \delta \Delta_g H^0$ is performed in gas phase) by Formulas 14 and 15, like it was done in this work (Table 2).

$$4\delta_{R}\Delta_{int}G^{0}_{b1} = -(PA_{H_{2}PR_{4}} - PA_{H_{2}Por}) = \\ = \Delta_{g}H^{0}_{b1(H_{2}PR_{4})} - \Delta_{g}H^{0}_{b1(H_{2}Por)}$$
(14)

$$4\delta_{R}\Delta_{int}G^{0}_{b2} = -(PA_{H_{3}P^{+}R_{4}} - PA_{H_{3}Por^{+}}) = \\ = \Delta_{g}H^{0}_{b2(H_{3}P^{+}R_{4})} - \Delta_{g}H^{0}_{b2(H_{3}Por^{+})}$$
(15)

Meso-phenyls show the polarity effect,^[17] which heighten the proton affinity of porphyrinic platform by 2.08% and 12.71% on the first and the second protonation steps, respectively. In H₂P(PhSO₃⁻)₄, the $\delta_{\rm ph}\Delta_{\rm int}G^0_{\ bl}$ effect is increased by the negative charge of sulfonate group approximately by 30 times on the first and by 10 times on the second protonation steps. The reason for substituents effects intensification can be the expansion of isoelectronic (18 $\pi \bar{e}$) conjugation major loop from 18 to 20 atoms in series of H₂P, H₃P⁺, H₄P⁺⁺ and, consequently, is one of the reasons for reducing the step difference PA_{H3P⁺} – PA_{H2P} in series of H₂Por, H₂P(Ph)₄, H₂P(PhSO₃⁻)₄.

Figure 5. Isoelectronic conjugation major loop of porphyrinic platform and its protonated forms.

Table 3. Contributions of solvation effects in kcal/mol.

Media Effect in Methanol

The integral media effect is made up of PA_{CH_3OH} , $\Delta_g G^0_{(CH_3OH)_2}$, $\Delta_g G^0_3$, $\Delta_g G^0_4$, $\Delta_u G^0_I$ and $\Delta_u G_{II}^0$.

Proton Solvation (PA_{MeOH})

The PA_{MeOH} value determines the acidity of solvated proton CH₃OH₂⁺ and, consequently, the lower bound of methanol pH scale.^[11,18] The differences PA_{H2P} – PA_{CH3OH} and PA_{H3P}⁺ – PA_{CH3OH} show, that proton solvation ($\Delta_g H^0_{CH3OH2^+}$ = 145.07 kcal/mol) causes the sharp decrease of protonation energy of H₂P and H₃P⁺ (Tables 3 and 4). As a result, the proton transfer from CH₃OH₂⁺ to H₃Por⁺ becomes disadvantageous. This fact allows to explain the absence of the second protonation step of H₃Por⁺ in methanol solution.

Formation of Solvatocomplexes $[H_4P^{++}]CH_3OH$ and $[H_4P^{++}](CH_3OH)_2 (\Delta_g G^0_{(CH_3OH)_2}, \Delta_g G^0_3, \Delta_g G^0_4)$

The [H₃P⁺](CH₃OH) complexes were not found in solutions experimentally. The calculations show, that formation of [H₃P⁺](CH₃OH) complexes for H₂Por, H₂P(Ph)₄ and H₂P(PhSO₃⁻)₄ is disadvantageous in gas phase as well, where H₃P⁺, unlike H₄P⁺⁺, can not tear the solvent molecule away from dimer (CH₃OH)₂. H₄P⁺⁺ form 2 solvatocomplexes [H₄P⁺⁺](CH₃OH) and [H₄P⁺⁺](CH₃OH)₂ with similar $\Delta_g G_3^0$ and $\Delta_g G_4^0$ values, which is the evidence of weak guest interference effect.^[2]

Transfer into Methanol $(\Delta_{tr}G_{I}^{0} and \Delta_{tr}G_{II}^{0})$

The solvation of reagents by transfer of Reactions 5 and 9 into methanol reduces their chemical affinities and,

Table 5. Contributions of solvation encets in Real/mol.							
D	I step						
Basis	$-(PA_{_{\mathrm{H_2P}}}-PA_{_{(\mathrm{CH_3OH})}})$	$\Delta_{ m tr} G_{ m I}^{\ 0}$	- $(PA_{H_3P^+} - PA_{(CH_3OH)})$	$\Delta_{ m g} G_3^{\ 0}$	$\Delta_{ m g} G_4^{\ 0}$	$\Delta_{\rm tr} G_{\rm II}^{0}$	
H_2P	-64.55	-59.05	+9.46	-6.06	-6.35		
H ₂ P(Ph) ₄	-68.92	-61.81	-7.77	-5.18	-4.38	-24.79	
$H_2P(PhSO_3)_4$	-206.64	-197.88	-150.76	-3.08	-2.17	-164.67	

Table 4. Contributions of solvation effects in %.

Davia		I step				II step		
Basis	PA _{CH3OH}	$\Delta_{ m tr}G_{ m I}^{\ 0}$	Sum	PA _{CH3OH}	$\Delta_{ m g} G_3^{\ 0}$	$\Delta_{ m g} G_4^{\ 0}$	$\Delta_{ m tr} G_{ m II}^{\ \ 0}$	Sum
H ₂ Por	69.21	28.17	97.38	-106.98	4.47	4.68		
H ₂ P(Ph) ₄	67.79	28.88	96.67	-94.92	4.15	2.86	-10.87	-98.77
H ₂ P(PhSO ₃ ⁻) ₄	41.25	56.35	97.60	-49.04	1.04	0.73	-51.80	-99.06

consequently, the energy of all chemical interactions (Tables 3 and 4). Relatively large values of $\Delta_{tr}G_{1}^{0}$ and $\Delta_{tr}G_{II}^{0}$ for H₂P(PhSO₃⁻)₄ are caused most likely by specific solvation of sulfonate groups. In general, media effects in methanol lower $\Delta_{g}G_{1}^{0}$ and $\Delta_{g}G_{II}^{0}$ of porphyrins by 97-99 % up to values of $\Delta_{s}G_{I}^{0}$ and $\Delta_{s}G_{II}^{0}$ typical for solutions.

Calculation of K_{2} , K_{3} and K_{4}

The transfer reduces the differences of protonation step energies of porphyrins. We took notice of the fact, that Relation 16 is constant for $H_2P(Ph)_4$ and $H_2P(PhSO_3^{-1})_4$.

$$\frac{\Delta_{\rm s}G_{\rm II}^0 - \Delta_{\rm s}G_{\rm I}^0}{\Delta_{\rm g}G_{\rm II}^0 - \Delta_{\rm g}G_{\rm I}^0} = 0.12 \tag{16}$$

It shows that transfer into methanol lowers $\Delta_{g}G_{II}^{0} - \Delta_{g}G_{I}^{0}$ by 88% regardless of the porphyrin molecular structure. Relation 16 was used for calculation of the value $K_{2}K_{3}K_{4}$ for H₂Por. Than, assuming that transfer equally decreases the energy properties of any elemental reaction, we used the Relation 17 to differentiate between K_{2} , K_{3} and K_{4} for H₂Por, H₂P(Ph)₄ and H₂P(PhSO₃⁻)₄ (Table 5).

$$\frac{\lg K_i}{\lg (K_2 K_3 K_4)} = \frac{\Delta_g G_i^0}{\Delta_g G_2^0 + \Delta_g G_3^0 + \Delta_g G_4^0}$$
(17)

 Table 5. Constants of I and II protonation steps of porphyrins in methanol.

Porphyrin	lgK ₁	lgK ₂	lgK ₃	lgK_4	$\lg K_2 - \lg K_1$
H ₂ Por	4.98	1.17	-0.87	-0.91	-3.81
$H_2P(Ph)_4$	6.16	0.72	0.41	0.35	-5.44
$H_2P(PhSO_3)_4$	7.37	2.88	0.06	0.04	-4.49

To verify the calculated K_1 , K_2 , K_3 and K_4 values, we made the simulation dependences (Equations 18-23) of

concentration current value of H_3P^+ , H_4P^{++} , $[H_4P^{++}](CH_3OH)$ and $[H_4P^{++}](CH_3OH)_2$ on pH of porphyrin solutions in methanol (Figure 6) and compared them with the experimental ones (Figures 1b, 2b, 3b).

$$C_{\rm H_2P} = \frac{1}{\sum_{i=1}^{n=5} C_i} \cdot 100\%$$
(18)

$$C_{\rm H_3P^+} = \frac{K_1 \cdot 10^{-pH}}{\sum_{i=1}^{n=5} C_i} \cdot 100\%$$
(19)

$$C_{\rm H_4 p^{++}} = \frac{K_1 \cdot K_2 \cdot 10^{-2p\,H}}{\sum_{i=1}^{n=5} C_i} \cdot 100\%$$
(20)

$$C_{[\mathrm{H}_{4}\mathrm{P}^{++}](\mathrm{CH}_{3}\mathrm{OH})} = \frac{K_{1} \cdot K_{2} \cdot K_{3} \cdot 10^{-2\mathrm{p}\,H} \cdot \mathrm{C}_{\mathrm{s}}}{\sum_{i=1}^{n=5} C_{i}} \cdot 100\%$$
(21)

$$C_{[\mathrm{H}_{4}\mathrm{P}^{++}](\mathrm{CH}_{3}\mathrm{OH})_{2}} = \frac{K_{1} \cdot K_{2} \cdot K_{3} \cdot K_{4} \cdot 10^{-2\mathrm{p}H} \cdot C_{\mathrm{s}}^{2}}{\sum_{i=1}^{n=5} C_{\mathrm{i}}} \cdot 100\%$$
(22)

$$\sum_{i=1}^{5} C_{i} = 1 + K_{1} \cdot 10^{-pH} + K_{1} \cdot K_{2} \cdot 10^{-2pH} + K_{1} \cdot K_{2} \cdot K_{3} \cdot K_{4} \cdot 10^{-2pH} \cdot C_{s}^{2}$$
(23)

In the case of H₂Por the maximal concentration of H₃P⁺ (Figure 6, H₂Por, n=5) reaches only 89% (2.40 pH) compared to 97% in the experiment. The observed divergence can be explained by sharp deviate of the real experimental system properties from model on the edge of methanol acidity. For H₂P(Ph)₄ and H₂P(PhSO₃⁻)₄ simulation dependences (Figure 6, H₂P(Ph)₄ and H₂P(PhSO₃⁻)₄ at n=5) agree ideally with the experimental ones, showing, that equilibriums of the second protonation step of these porphyrins practically are totally

Figure 6. Simulation dependences corresponding to Equations 18-22: H_2P (red), H_3P^+ (blue), H_4P^{++} (cyan), $[H_4P^{++}](CH_3OH)$ (green), $[H_4P^{++}](CH_3OH)_2$ (dark green). Points n=5, lines n=3.

shifted to $[H_4P^{++}](CH_3OH)_2$ because of the big concentration (activity) of the solvent in the solution, just as we supposed in the beginning of this work.

For graphic illustration of the media effects, we made hypothetical dependences (18-20), neglecting the formation of solvatocomplexes $[H_4P^{++}](CH_3OH)$ and $[H_4P^{++}](CH_3OH)_2$ (Figure 6, *n*=3). These dependences (solid lines) show, that without complexing the concentration of H_3P^+ reaches 100% in all cases and, consequently, the titration curves would be two-step. But in the methanol p*H* scale we would observe only the first step of protonation of $H_2P(Ph)_4$ and the half of the second one for $H_2P(PhSO_3^-)_4$.

Conclusions

The diprotonated porphyrinic platform H_4P^{++} is a molecular receptor and bundles up the methanol molecules, forming the solvatocomplexes $[H_4P^{++}](CH_3OH)$ and $[H_4P^{++}](CH_3OH)_2$. The equilibriums of the second protonation step of H_2P composed of 5,10,15,20-tetraphenylporphin and 5,10,15,20-tetrakis(4'-sulfonatophenyl)porphin practically are totally shifted to solvatocomplexes $[H_4P^{++}](CH_3OH)_2$. This effect is the reason for levelling the step protonation constants of porphyrins, measured by spectrophotometric method, which "doesn't distinguish" the light-absorbing centers H_4P^{++} , $[H_4P^{++}](CH_3OH)_3$.

References

 Sheinin V.B., Simonova O.R., Ratkova E.L. *Macroheterocycles* 2008, 1, 72-78.

- Sheinin V.B., Ratkova E.L., Mamardashvili N.Zh. J. Porphyrins Phthalocyanines 2008, 12, 1211-1219.
- Sheinin V.B., Ivanova Yu.B., Berezin B.D. Russ. J. Coord. Chem. 2002, 28, 158-160.
- Sheinin V.B., Ivanova Yu.B., Berezin B.D. Russ. J. Gen. Chem. 2002, 72, 1128-1131
- Sheinin V.B., Shabunin S.A., Bobritskaya E.V., Koifman O.I. Macroheterocycles 2011, 4, 80-84.
- Medforth C.J., Wang Zh., Martin K.E., Song Y., Jacobsen J.L., Shelnutt J.A. *Chem. Commun.* 2009, 47, 7261-7277.
- Aleksandrov V.V. Kislotnost' Nevodnyh Rastvorov [Acidity of Nonaqueous Solutions]. Khar'kov: Viwa shkola. Izd-vo pri Khar'k. un-te, 1981. 152 p. (in Russ.).
- 8. Krol S. J. Org. Chem. 1959, 24, 2065.
- 9. Adler A.D., Longo F.R. J. Org. Chem. 1967, 32, 476.
- Bushy C.A., Dinello R.K., Dolphin D.A. Can. J. Chem. 1975, 53, 11, 1544.
- 11. Izmailov N.A. *Elektrokhimiya Rastvorov* [*Electrochemistry of Solutions*]. 3rd ed. Moskva: Khimiya, **1976**. 488 p. (in Russ.).
- Bernshtein I.Ya., Kaminskiy Yu.L. Spektrofotometricheskiy Analiz v Organicheskoy Khimii [Spectopjotometric Analysis in organic Chemistry]. Leningrad: Khimiya, 1986. 199 p. (in Russ.).
- Krishtal' S.P., Kiselev M.G. Russ. J. Phys. Chem. A 2003, 77, 1817-1820 (in Russ.).
- Hartley F.R., Burgess C., Alcock R.M. Solution Equilibria. New York: Ellis Horwood, 1980. 361 p.
- Gordon J.E. The Organic Chemistry Of Electrolyte Solution. Jon Wiley & Song, 1975. 554 p.
- Sheinin V.B., Ivanova Yu.B. Russ. J. Phys. Chem. A 2007, 81, 1250-1255.
- Reichard C. Solvent Effect in Organic Chemistry. 3rd ed. John Wiley & Sons, 2006. 653 p.
- Bates R.G. Determination of pH, Theory and Practice. 2nd ed. John Wiley & Sons, Inc., New Vork, N. V. 1973. 479 p.

Received 30.09.2012 Accepted 14.10.2012