Electronic supporting information (ESI) for article:

Phthalocyanines and Metal Phthalocyanines with Phosphoryl Groups: Supramolecular Ensembles, Photochemical and Photobiological Properties

Polina A. Mikhina,^{a,b} Denis V. Mishchenko,^{a,c} Mariya A. Lapshina,^a Pavel A. Tarakanov,^{a,d@1} Vladimir E. Baulin,^d and Nataliya F. Goldshleger^{a@2}

^aInstitute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia

^bLomonosov Moscow State University, 119991 Moscow, Russia

^cScientific and Educational Center of Moscow State Regional University in Chernogolovka, 141014 Mytishchi, Russia

^dInstitute of Physiologically Active Compounds RAS, 1142432 Chernogolovka, Russia

^{@1}Corresponding author E-mail: pavel369@inbox.ru

^{@2}Corresponding author E-mail: nfgold@icp.ac.ru

Фталоцианины и металлофталоцианины с фосфорильными группами: супрамолекулярные ансамбли, фотохимические и фотобиологические свойства

П. А. Михина, ^{a,b} Д. В. Мищенко, ^{a,c} М. А. Лапшина, ^a П. А. Тараканов, ^{a,d@1} В. Е. Баулин, ^d Н. Ф. Гольдшлегер^{a@2}

^аИнститут проблем химической физики РАН, 142432 Черноголовка, Россия

^bМосковский государственный университет имени М.В. Ломоносова, 119991 Москва, Россия ^cНаучно-образовательный центр в г. Черноголовка Московского государственного областного университета, 141014 Мытици, Россия

^dИнститут физиологически активных веществ РАН, 142432 Черноголовка, Россия

^{@1}E-mail: pavel369@inbox.ru

^{@2}E-mai: nfgold@icp.ac.ru

Figure S1. Absorption spectra of IV in DMSO. The inset shows the dependence of optical density Q-band on the concentration of IV.

Figure S2. Absorption spectra of compounds I-III in the microheterogeneous system CTAB/PBS. The numbers 1, 2 and 3 correspond to the spectra of compounds of I, III and II.

Figure S3. Change in the optical density of A_{686} in the microheterogeneous system IV/CTPB/PBS depending on [CTPB]: $[IV] = 6.06 \cdot 10^{-6}$ M, [CTPB]: $1.88 \cdot 10^{-5} \div 8.4 \cdot 10^{-4}$ M, [PBS] = 0.01 M. In the insert: spectra IV in the state of dimer (1) and monomer (2) at [CTPB] = 0 and $8.4 \cdot 10^{-4}$ M, respectively.

Figure S4. Deconvolution of the experimental spectrum III/CTAB/PBS using 4 Gauss functions.

Figure S5. Deconvolution of the experimental spectrum III/SDC/PBS using 6 Gauss functions.

Figure S6. Transformations in the AnthX₂/IV system in a micellar solution of CTAB in air upon irradiation, where Anth₂ and IV act as quencher of ${}^{1}O_{2}$ and PS, respectively (laser, $\lambda = 670$ nm).

Figure S7. Deconvolution of the absorption spectrum of the IV/BSA/PBS system using 4 Gauss functions.