Supplementary materials for article

Влияние селективного галогенирования тетрапиррольного макроцикла на комплексообразующую способность Zn-тетраарилпорфиринов по отношению к малым органическим молекулам

О. А. Дмитриева,^а М. О. Койфман,^b У. М. Дербишина,^a Н. В. Чижова,^a Н. Ж. Мамардашвили^{a@}

^аИнститут химии растворов им. Г.А. Крестова Российской академии наук, 153045 Иваново, Россия ^bИвановский государственный химико-технологический университет, 153000 Иваново, Россия [@]E-mail: ngm@isc-ras.ru

The Effect of Selective Halogenation of Tetrapyrrolic Macrocycle on Binding Ability of Zn-Tetraarylporphyrins Towards Small Organic Molecules

Olga A. Dmitrieva,^a Mikhail O. Koifman,^b Ulyana M. Derbyshina,^a Natalya V. Chizhova,^a and Nugzar Z. Mamardashvili^{a@}

^aG.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russian Federation ^bIvanovo State University of Chemistry and Technology, 153000 Ivanovo, Russian Federation [@]Corresponding author E-mail: ngm@isc-ras.ru

Рисунок С1. ЯМР ¹Н-спектры соединений IV (а), VII (б) и VIII (в) (CDCl₃, 25 °C).

Рисунок С2. Характеристики масс-спектров соединений II (а), III (б), V (в) и VI (г).

Рисунок С3. Изменения в ЭСП при спектрофотометрическом титровании I (a), II (б), IV (в), V (Γ), VI (д), VII (е) имидазолом (L1) в области полосы Соре (дихлорметан, 25 ⁰С).

Рисунок С4. Изменения в ЭСП при спектрофотометрическом титровании I (а), VII (б) и VIII (в) L3 в области полосы Соре (дихлорметан, 25 ⁰С).

Таблица С2. Средние длины связей, углы и геометрические параметры комплексов цинка с имидазолом (L1), оптимизированных в газовой фазе методом DFT с набором B3LYP/6-31G.

	Ι	II	III	IV	V	VI	VII	VIII
Zn-L ₁	2.14	2.14	2.13	2.12	2.13	2.12	2.11	2.10
Zn-Ca	3.12	3.12	3.11	3.12	3.12	3.14	3.06	3.08
Zn-N	2.10	2.10	2.10	2.10	2.10	2.15	2.09	2.09
Zn-N-C _a	126	126	125	126	126	124	122	123
N-Ca	1.39	1.39	1.39	1.38	1.39	1.39	1.39	1.38

Short Title (running header)

N-C _b	2.32	2.32	2.32	2.32	2.32	2.30	2.29	2.30
N-Ca-Cb	109	109	109	110	109	108	108	108
Zn-N-Ca-Cb	163	163	163	168	163	154	142	149
Ca-Cb	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45
Zn-Cm	3.13	3.14	3.12	3.12	3.13	3.09	3.12	3.12
C _m -C _p	1.41	1.41	1.41	1.41	1.41	1.41	1.41	1.41
Zn-Cm-Cp	93	93	93	93	94	95	93	93
N ₁ -Zn-N ₂	88	88	88	88	88	88	88	88
C_m - C_p - C_d - C_k	63	64	66	89	65	71	66	79

Таблица С3. Оптимизированные структуры комплексов I-VIII с L1 и энергии связи Zn-N(L) в них.

I (-14.90 ккал/моль)

II (-15.93 ккал/моль)

III (-16.21ккал/моль)

IV (-17.85 ккал/моль)

V (-15.46 ккал/моль)

VI (-15.46 ккал/моль)

VII (-19.95ккал/моль)

VIII (-23.03 ккал/моль)

Рисунок С5. Спектры ЯМР ¹Н комплексов VII-L1 (а), IV-L2 (б) (CDCl₃, 25 ⁰C).