DOI: 10.6060/mhc191280b

Энергия активации процессов протонного обмена диметилового эфира дейтеропорфирина IX с водой в среде С₆D₆ по данным DOSY

А. Л. Столыпко, а Д. В. Белых^{ь@}

^аСыктывкарский государственный университет, 167000 Сыктывкар, Российская Федерация ^bИнститут химии Коми научного центра Уральского отделения Российской академии наук, 167982 Сыктывкар, Российская Федерация [@]E-mail: belykh-dv@mail.ru

Методом DOSY определены энергии активации процессов, обуславливающих изменение коэффициента самодиффузии D протонов воды и внутрициклических протонов NH диметилового эфира дейтеропорфирина IX $(D_w u D_{NH})$, связанных с протонным обменом между молекулами этих соединений в среде $C_6 D_6$. Энергия активации процессов, обуславливающих изменение $D_w u D_{NH}$, составила соответственно $E_a(W) = 27.3 \pm 1.3$ кДж/моль $u E_a(NH) = 15.8 \pm 0.7$ кДж/моль. Судя по полученным данным, активационные барьеры во всех случаях связаны с разрывом водородных связей при образовании и разрушении ассоциатов порфирин-вода, формирование которых является необходимым условием протекания обмена.

Ключевые слова: Порфирины, спектроскопия DOSY, протонный обмен, энергия активации, дейтеропорфирин IX.

Activation Energy of Proton Exchange Processes of Deuteroporphyrin IX Dimethyl Ester with Water in C₆D₆ Medium Based on DOSY Data

Alexander L. Stolypko,^a and Dmitriy V. Belykh^{b@}

^aSyktyvkar State University, 167000 Syktyvkar, Russia

^bInstitute of Chemistry of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 167000 Syktyvkar, Russia

[@]Corresponding author E-mail: belykh-dv@mail.ru

The activation energies of the processes which determine the change in the self-diffusion coefficient D of water protons and the internal NH protons of deuteroporphyrin IX dimethyl ester (D_W and D_{NH}) associated with the proton exchange between the molecules of these compounds in C_6D_6 medium are determined by the DOSY method. The activation energies of the processes that cause the change in D_W and D_{NH} were estimated to be $E_a(W) = 27.3 \pm 1.3$ kJ/mol and $E_a(NH) = 15.8 \pm 0.7$ kJ/mol, respectively. The data obtained show, that activation barriers in all cases are associated with the breaking of hydrogen bonds during the formation and destruction of porphyrin-water associates, the formation of which is a necessary condition for the exchange.

Keywords: Porphyrins, DOSY spectroscopy, proton exchange process, activation energy, deuteroporphyrin IX.

Введение

Взаимодействие молекул воды с протонами внутрициклических групп NH порфиринов, в том числе обменные процессы, играет значительную роль в образовании супрамолекулярных систем (ассоциатов, различных агрегатов, молекулярных кристаллов, органо-неорганических систем и др.),^[1-3] а так же при реализации рецепторной^[4,5] и органокаталитической^[5,6] функций порфиринов и их аналогов. Метод DOSY интенсивно используется для изучения химических свойств порфиринов и их аналогов,^[7-15] в том числе процессов протонного обмена с участием внутрициклических протонов NH.^[12-15] Ранее нами было показано, что обменные процессы с участием внутрициклических групп NH синтетических и природных порфиринов с молекулами воды, содержащейся в CDCl₂ и C₆D₆, проявляются в DOSY увеличением коэффициентов самодиф
фузии D протонов NH $(D_{_{\rm NH}})$ по сравнению с протонами С-Н ($D_{\rm CH}$) порфириновой молекулы, причем разница $D_{\rm NH}$ и $D_{\rm CH}^{\rm CH}$ зависит от того, насколько интенсивно внутрициклическая группа NH участвует в обменных процессах.^[14,15] Кроме того, нами было показано, что величины $D_{_{\rm NH}}$ и $D_{_{\rm W}}$ определяются интервалом между градиентными импульсами в методе DOSY (t_m), и зависимости величин $D_{_{\rm NH}}$ и $D_{_{\rm W}}$ от ${\rm t_m}$ соответствуют условию быстрого обмена как в CDCl₃, так и в C₆D₆.^[14,15] Измерены константы скорости переноса внутрициклического протона NH порфирина на молекулу воды ($k_{_{\rm NH}}$) и обратного процесса ($k_{\rm w}$) для диметилового эфира дейтеропорфирина IX в CDCl₃^[14] и ряда природных и синтетических порфиринов в С₆D₆,^[15] причем оказалось, что $k_{\rm w}$ всегда больше, чем $k_{\rm NH}$. Несовпадение величин $k_{_{\rm NH}}$ и $k_{_{\rm W}}$ объясняется образованием долгоживущих ассоциатов вода-порфирин за счет межмолекулярных

водородных связей с участием внутрициклических атомов азота порфирина, в результате чего снижение $D_{\rm W}$ происходит не только вследствие протонного обмена, но и в результате диффузии воды в составе ассоциата.^[14,15] Более полное представление о взаимодействии молекул воды с протонами внутрициклических групп NH порфиринов может дать информация об энергии активации процессов переноса протонов. В связи с этим в настоящей работе на примере диметилового эфира дейтеропорфирина IX (1) (Схема 1) определена энергия активации E_a (NH) процесса, связанного с переносом протонов с внутрициклических групп NH данного порфирина на молекулу воды, и энергия активации E_a (W) обратного процесса в среде $C_6 D_6$.

Экспериментальная часть

Диметиловый эфир дейтеропорфирина IX (1) получен согласно,[16] спектральные характеристики совпадают с описанными нами ранее.^[15] Исследуемый раствор запаян в стандартные ампулы ЯМР фирмы Bruker диаметром 5 мм. Все ранее проведенные эксперименты для данного образца показывают, что образцы стабильны в течение, по крайней мере, 10 месяцев. Измерения были выполнены на спектрометре Bruker Avance II (рабочая частота 300 МГц). Спектры ЯМР, DOSY и EXSY обрабатывались с использованием программы MestReNova 14.1.0-24037. Концентрация исследуемых соединений в С₆D₆ 0.005-0.010 ммоль/мл. Концентрация воды в С₆D₆ 0.01 ммоль/мл. Параметры эксперимента DOSY: импульсная последовательность «двойное стимулированное эхо с биполярными градиентными импульсами» реализована на спектрометре Bruker Avance II с помощью стандартной программы с компенсацией конвекции dstebpgp3s, время диффузии D20 варьировалось от 0.05 до 1 с, длительности градиентных импульсов Р30 варьировалась в пределах от 150 до 900 мкс, количество накоплений

Схема 1.

NS = 32, число градиентных спектров TD (F1) = 32, каждый спектр имеет частоту дискретизации 16384. Параметры эксперимента EXSY: импульсная последовательность noesyph, количество накоплений NS = 32, число градиентных спектров TD (F1) = 256, каждый спектр имеет частоту дискретизации 16384, время смешивания D8 = 0.7 с; релаксационная задержка D1 = 5 с (времена релаксации для протонов воды и NH-протонов, соответственно, 1.2 с и 1 с). Эксперименты проводились при стабилизации температуры и с использованием воздушной подушки для уменьшения влияния внешних вибраций. Скорость потока воздуха в термостате 670 л/час.

Результаты и обсуждение

Для выяснения возможностей использования метода DOSY в определении энергии активации процессов переноса протона среде С6D6 из исследованных ранее порфиринов^[15] наиболее удобным является диметиловый эфир дейтеропорфирина (1). Этот порфирин имеет эквивалентные внутрициклические NH-протоны, и скорости обменных процессов с их участием относительно низки. Кроме того, сигналы протонов молекул воды и внутрициклических групп NH относительно узкие и интенсивные, что значительно облегчает измерения. Как уже было отмечено в наших предыдущих работах, [11,12,14,15] использованный метод позволяет изучать только те процессы, которые сопровождаются изменением наблюдаемых коэффициентов самодиффузии молекул воды и внутрициклических протонов NH порфирина (соответственно, $D_{\rm W}$ и $D_{\rm NH}$). Это позволяет определить константы скорости процессов, обуславливающих изменение D протонов молекул воды (k_w) и внутрициклических групп NH $(k_{_{\rm NH}})$, а измерение этих констант при разных температурах позволяет определить энергии активации этих процессов (соответственно, E_{a} (W) и E_{a} (NH)).

Как известно, температурные зависимости констант скорости химических реакций *k* определяются уравнением Аррениуса (аналогично^[17]):

$$k = A \cdot \exp(-E_z/RT), \tag{1}$$

где А – постоянная (фактор частоты), R – универсальная газовая постоянная. Экспериментальные зависимости $k_{\rm W}$ и $k_{\rm NH}$ от температуры в Аррениусовых координатах представлены на Рисунке 1. Энергии активации $E_{\rm a}({\rm W})$ и $E_{\rm a}({\rm NH})$ и их погрешности вычислялись из уравнения (1) путем аппроксимации экспериментальных точек прямыми по методу наименьших квадратов. Величины энергий активации составили: $E_{\rm a}({\rm W})=27.3\pm1.3$ кДж/моль; $E_{\rm a}({\rm NH})=15.8\pm0.7$ кДж/моль.

Как нами было показано ранее,^[14,15] образование ассоциата порфирин-вода является необходимым условием протонного обмена и определяет изменение D_w в зависимости от условий эксперимента. Образование ассоциата порфирин-вода с участием внутрициклических протонов NH порфирина дополнительно подтверждается методом EXSY (Рисунок 2). В спектре EXSY хорошо определяются кросс-пики NH/H₂O, которые однозначно указывают на наличие кросс-релаксации при взаимодействии (сближении)

Рисунок 1. Зависимости констант переноса протона с молекулы воды на группы NH диметилового эфира дейтеропорфирина (k_w , график 1) и с групп NH диметилового эфира дейтеропорфирина на молекулу воды (k_{NH} , график 2) в координатах Аррениуса.

внутрициклических протонов NH порфиринового макроцикла с молекулой воды, что подтверждает образование ассоциата, причем положительное значение кросс-пика NH/H₂O свидетельствует о протекании обменных процессов. [18] Известно, что растворенная в бензоле вода существует в виде отдельных молекул, образующих симметричные водородные связи с молекулами растворителя (Схема 1).^[19] Величина E₂(W) соответствует разрыву в среднем двух водородных связей между молекулами воды и бензола: энергия самой прочной из возможных водородной связи, образованной с участием атомов водорода молекулы воды и π-электронов бензольного кольца по разным оценкам находится в диапазоне от -13 до -15 кДж/ моль.[20-22] Таким образом, полученный результат можно объяснить тем, что при образовании ассоциата порфирин-вода происходит разрыв двух водородных связей молекулы воды с растворителем, что и определяет величину $E_{a}(W)$. Образование водородной связи порфирина с молекулой воды возможно не только при участии внутрициклических групп NH, но и атомов азота иминных групп, что повышает вероятность образования ассоциата и может обуславливать снижение *D*_w помимо обменных процессов.

 $D_{\rm NH}$ при переносе протона с молекулы порфирина на молекулу воды увеличивается только в случае разрушения ассоциата порфирин-вода, поэтому наблюдаемая $E_{\rm a}$ (NH) связана только с процессами высвобождения воды. Определенная нами $E_{\rm a}$ (NH) находится в пределах значения единичной энергии водородной связи для взаимодействий с водой порфиринов, описанных в литературе^[1,23,24] (от 10 до 20 кДж/моль). На основании литературных данных^[17] можно предположить протекание обмена через *цис*-таутомер, как изображено на Схеме 1 применительно к диметиловому эфиру дейтеропорфирина IX. По литературным данным,^[1] взаимодействие с водой стабилизирует энергетически невыгодный

Рисунок 2. Спектр EXSY диметилового эфира дейтеропорфирина. Числа показывают величины интегралов выделенных пиков относительно диагонального пика воды.

Схема 2.

цис-таутомер. Этот процесс может способствовать протеканию обмена, поскольку образующийся при обмене *цис*-таутомер оказывается стабилизированным молекулами воды (Схема 2), при этом энергия, необходимая для разрушения такого ассоциата при образовании *транс*-таутомера, может давать наблюдаемый энергетический барьер.

Заключение

Таким образом, в настоящей работе определены энергии активации процессов, обуславливающих изменение D протонов воды и внутрициклических протонов NH диметилового эфира дейтеропорфирина IX, связанных с протонным обменом между молекулами

Макрогетероциклы / Macroheterocycles 2019 12(4) 398-402

Proton Exchange between Deuteroporphyrin IX Dimethyl Ester and Water

этих соединений в среде C_6D_6 . Активационные барьеры в обоих случаях связаны с разрывом водородных связей при образовании и разрушении ассоциатов порфиринвода, формирование которых является необходимым условием протекания обмена.

Благодарности. Спектральные данные были получены при помощи оборудования ЦКП «Химия» Института химии Коми НЦ УрО РАН (г. Сыктывкар).

Список литературы

References

- Thomas K.E., McCormick L.J., Vazquez-Lima H., Ghosh A. Angew. Chem. Int. Ed. 2017, 56, 10088–10092.
- Udal'tsov A.V., Kazarin L.A., Sinani V.A., Sweshnikov A.A. J. Photochem. Photobiol. A: Chemistry 2002, 151, 105–119.
- Udal'tsov A.V., Bolshakova A.V., Vos J.G. J. Mol. Struct. 2014, 1065–1066, 170–178.
- Yang J., Wang Z., Hu K., Li Y., Feng J., Shi J., Gu J. ACS Appl. Mater. Interfaces 2015, 7, 11956–11964.
- 5. Kielmann M., Senge M.O. Angew. Chem. Int. Ed. 2019, 58, 418–441.
- Hikal W.M., James Harmon H. J. Hazard. Mater. 2008, 154, 826–831.
- Khodov I.A., Nikiforov M.Yu., Alper G.A., Mamardashvili G.M., Mamardashvili N.Zh., Koifman O.I. J. Mol. Struct. 2015, 1081, 426–430.
- Khodov I.A., Alper G.A., Mamardashvili G.M., Mamardashvili N.Zh. J. Mol. Struct. 2015, 1099, 174–180.

- Bichan N.G., Tyulyaeva E.Yu., Khodov I.A., Lomova T.N. J. Mol. Struct. 2014, 1061, 82–89.
- 10. Khodov I.A. Macroheterocycles 2017, 10, 313-316.
- 11. Belykh D.V., Stolypko A.L. Macroheterocycles 2017, 10, 51–56.
- 12. Stolypko A.L., Belykh D.V. *Macroheterocycles* **2015**, *8*, 389–393.
- Stolypko A.L., Startseva O.M., Belykh D.V. Macroheterocycles 2015, 8, 47–49.
- 14. Stolypko A.L., Belykh D.V. *Macroheterocycles* 2018, 11, 383–389.
- 15. Belykh D.V., Stolypko A.L. *Macroheterocycles* **2019**, *12*, 392–397.
- Porphyrins: Structure, Properties, Synthesis (Enikopyan N.S., Ed.) Moscow: Nauka, 1985. 334 р. (in Russ.) [Порфирины: структура, свойства, синтез (Ениколопян Н.С., ред.) М.: Наука, 1985. 334 с.].
- Braun J., Schlabach M., Wehrle B., Köcher M., Vogel E., Limbach H.-H. J. Am. Chem. Soc. 1994, 116, 6593–604.
- Ernst R., Bodenhausen J., Vokaun A. NMR in One and Two Dimensions. Moscow: Mir, 1990. 711 р. (in Russ.) [Эрнст Р., Боденхаузен Дж., Вокаун А. ЯМР в одном и двух измерениях (пер. с англ.) М: Мир, 1990. 711 с.].
- Lange K.M., Hodeck K.F., Schade U., Aziz E.F. J. Phys. Chem. B 2010, 114, 16997–17001.
- Atwood J.L., Hamada F., Robinson K.D., William Orr G., Vincent R.L. *Nature* 1991, 349, 683–684.
- Janjić G.V., Veljković D.Ž., Zarić S.D. Cryst. Growth Des. 2011, 11, 2680–2683.
- 22. Ostojić B.D., Janjić G.V., Zarić S.D. Chem. Commun. 2008, 6546–6548.
- Ma Y.-P., He Sh.-G., Ding X.-L., Wang Z.-Ch., Xue W., Shi Q. Phys. Chem. Chem. Phys. 2009, 11, 2543–2552.
- 24. Liang Y., Chang C.K., Peng Sh.-M. J. Mol. Recognit. 1996, 9, 149–157.

Received 06.12.2019 Accepted 23.12.2019