Supporting Information

to the article

Nitro-derivatives of Benzoazacrown Ethers: Synthesis, Structure, and Complexation with Metal and Ammonium Cations and Fluoride Anion

Svetlana N. Dmitrieva,^a Nikolay A. Kurchavov,^a Lyudmila G. Kuz'mina,^b Artem I. Vedernikov,^a Marina V. Churakova,^a Sergey K. Sazonov,^a Judith A. K. Howard,^c and Sergey P. Gromov^{a,d@}

 ^aPhotochemistry Center of RAS, FSRC "Crystallography and Photonics", Russian Academy of Sciences, 119421 Moscow, Russian Federation
^bN.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
^cChemistry Department, Durham University, DH1 3LE Durham, UK
^dDepartment of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
[@]Corresponding author E-mail: spgromov@mail.ru

Table of Contents

		Page
1.	Figure S1. ¹ H NMR spectrum of compound 1a.	3
2.	Figure S2. ¹ H NMR spectrum of compound 1b.	4
3.	Figure S3. ¹ H NMR spectrum of compound 1c.	5
4.	Figure S4. ¹ H NMR spectrum of compound 2a.	6
5.	Figure S5. ¹ H NMR spectrum of compound 2b.	7
6.	Figure S6. ¹ H NMR spectrum of compound 2c.	8
7.	Figure S7. ¹ H NMR spectrum of compound 5.	9
8.	Figure S8. ¹ H NMR spectrum of compound 7.	10
9.	Figure S9. ¹ H NMR spectrum of compound 8.	11
10.	Figure S10. ¹³ C NMR spectrum of compound 1a.	12
11.	Figure S11. ¹³ C NMR spectrum of compound 1b.	13
12.	Figure S12. ¹³ C NMR spectrum of compound 1c.	14
13.	Figure S13. ¹³ C NMR spectrum of compound 5.	15
14.	Figure S14. ¹ H NMR titration data for compound 1c with NaClO ₄ .	16
15.	Figure S15. ¹ H NMR titration data for compound 1c with KClO ₄ .	16
16.	Figure S16. ¹ H NMR titration data for compound 1c with Ca(ClO ₄) ₂ .	17
17.	Figure S17. ¹ H NMR titration data for compound 1c with Ba(ClO ₄) ₂ .	17

Figure S1. ¹H NMR spectrum of compound 1a (500.13 MHz, DMSO-*d*₆, 25 °C).

Figure S2. ¹H NMR spectrum of compound 1b (500.13 MHz, DMSO-*d*₆, 25 °C).

Figure S3. ¹H NMR spectrum of compound 1c (500.13 MHz, DMSO-*d*₆, 25 °C).

Figure S4. ¹H NMR spectrum of compound 2a (500.13 MHz, DMSO-*d*₆, 25 °C).

Figure S5. ¹H NMR spectrum of compound **2b** (500.13 MHz, DMSO-*d*₆, 25 °C).

Figure S6. ¹H NMR spectrum of compound 2c (500.13 MHz, DMSO-*d*₆, 25 °C).

Figure S7. ¹H NMR spectrum of compound 5 (500.13 MHz, DMSO-*d*₆, 25 °C).

Figure S8. ¹H NMR spectrum of compound 7 (500.13 MHz, DMSO-*d*₆, 25 °C).

Figure S9. ¹H NMR spectrum of compound **8** (500.13 MHz, DMSO-*d*₆, 25 °C).

Figure S10. ¹³C NMR spectrum of compound 1a (125.76 MHz, MeCN-*d*₃, 25 °C).

Figure S11. ¹³C NMR spectrum of compound 1b (125.76 MHz, CDCl₃, 25 °C).

Figure S12. ¹³C NMR spectrum of compound 1c (125.76 MHz, MeCN-d₃, 25 °C).

Figure S13. ¹³C NMR spectrum of compound 5 (125.76 MHz, DMSO-*d*₆, 25 °C).

Figure S14. Values of $\Delta \delta_{\rm H} = \delta_{\rm H}(\mathbf{1c}/\text{NaClO}_4 \text{ mixture}) - \delta_{\rm H}(\text{free } \mathbf{1c})$ for some protons of compound $\mathbf{1c}$ as a function of the NaClO₄/1c concentration ratio, MeCN-*d*₃, 25 °C.

Figure S15. Values of $\Delta \delta_{\rm H} = \delta_{\rm H} (\mathbf{1c}/\rm KClO_4 \text{ mixture}) - \delta_{\rm H} (free \mathbf{1c})$ for some protons of compound $\mathbf{1c}$ as a function of the KClO₄/ $\mathbf{1c}$ concentration ratio, MeCN- d_3 , 25 °C.

Figure S16. Values of $\Delta \delta_{\rm H} = \delta_{\rm H} (1 c/Ca(ClO_4)_2 \text{ mixture}) - \delta_{\rm H} (\text{free 1c})$ for some protons of compound 1c as a function of the Ca(ClO_4)_2/1c concentration ratio, MeCN-d_3, 25 °C.

Figure S17. Values of $\Delta \delta_{\rm H} = \delta_{\rm H} (\mathbf{1c}/\mathrm{Ba}(\mathrm{ClO}_4)_2 \text{ mixture}) - \delta_{\rm H} (\text{free } \mathbf{1c})$ for some protons of compound $\mathbf{1c}$ as a function of the $\mathrm{Ba}(\mathrm{ClO}_4)_2/\mathbf{1c}$ concentration ratio, MeCN-*d*₃, 25 °C.