DOI: 10.6060/mhc180173s

Редокс превращения µ-карбидодимерного тетра-4-*mpem*-бутилфталоцианината железа(IV) в присутствии органических пероксидов

О. Р. Симонова,^{а@} С. В. Зайцева,^а С. А. Зданович,^а О. И. Койфман^{а,b}

Посвящается профессору Голубчикову О.А. – неутомимому генератору идей, талантливому ученому и мудрому учителю, мечтателю, познающему истину

^аИнститут химии растворов им. Г.А. Крестова РАН, 153045 Иваново, Россия ^ьИвановский государственный химико-технологический университет, 153000 Иваново, Россия @E-mail: ors@isc-ras.ru

Спектрофотометрически изучена реакция μ-карбидодимерного тетра-4-трет-бутилфталоцианината железа(IV) с трет-бутилгидропероксидом и трет-бутилпероксидом. Получены кинетические характеристики, предложен возможный механизм этой реакции. Отмечено влияние природы пероксида на скорость и механизм редокс превращений. Установлено, что одноэлектронному окислению μ-карбидодимерного тетра-4-третбутилфталоцианината железа(IV) предшествует координация пероксида на катионе металла с последующим гомолитическим разрывом связи О–О в координированной молекуле. Образующаяся в ходе реакции оксо-форма, окисленная по макроциклу, легко восстанавливается в присутствии имидазола до нейтрального соединения. Показана каталитическая активность π-катион-радикала димерного комплекса железа(IV) в реакции окисления ликопина.

Ключевые слова: Фталоцианин, димер, комплекс, железо, пероксид, радикал, катализ, ликопин.

Redox Reactions of µ–Carbido Diiron(IV) Tetra–4–*tert*–butylphthalocyaninate with Organic Peroxides

Olga R. Simonova,^{a@} Svetlana V. Zaitseva,^a Sergey A. Zdanovich,^a and Oskar I. Koifman^{a,b}

^aKrestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia ^bIvanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia [@]Corresponding author E-mail: ors@isc-ras.ru

The interaction of μ -carbido diiron(IV) tetra-4-tert-phthalocyaninate with tert-butylhydroperoxide and tert-butylperoxide was studied spectrophotometrically. The kinetic characteristics were obtained and a possible mechanism of redox interaction, influenced by the nature of the peroxide, was proposed. The reaction is redox multi-step process, where the coordination of peroxide molecule on the iron center with subsequent homolytic O-O bond cleavage follows after one-electron oxidation of the complex up to π -cation radical. The resulting π -cation radical species can be easily reduced in the presence of imidazole up to a neutral form. The catalytic activity of the oxidized species of the dimeric iron(IV) complex in the lycopene oxidation reaction is shown.

Keywords: Phthalocyanine, dimer, complex, iron, peroxide, radical, catalysis, lycopene.

µ-Carbido Diiron(IV) Tetra-4-tert-butylphthalocyaninate

Введение

Активные центры многих ферментов (каталаз, пероксидаз, цитохромов), участвующих в биологическом окислении, содержат высоковалентные оксо-комплексы порфирината железа, которые обладают способностью быстро отдавать или присоединять электрон. Толуолмонооксигеназа, фенолгидроксилаза, алкенмонооксигеназа, бутанмонооксигеназа и другие ферменты служат связующим звеном в процессах, требующих окисления алканов, олефинов и ароматических соединений.^[1,2] Активный центр метанмонооксигеназы, содержащий два атома железа, катализирует такой сложный процесс, как окисление метана.^[3] Участие ферментов в окислительной биотрансформации эндогенных биоорганических веществ, чужеродных органических соединений, лекарственных препаратов и т.д. стимулировало многочисленные исследования, направленные на адекватное моделирование каталитических систем.

Способность биядерных тетрапиррольных макроциклических комплексов железа, как и моноядерных, активировать кислород и органические пероксиды, с образованием оксо форм,^[4-6] характеризующихся высокой каталитической активностью в селективном окислении ароматических соединений и спиртов, [7-11] дает возможность использовать эти комплексы в качестве катализаторов редокс-реакций.

Более высокой устойчивостью к мономеризации и окислительной деструкции по сравнению с оксокомплексами, наряду с нитридодимерными комплексами, обладают изоструктурные соединения железа с карбидным мостиком.^[12-16]

Исследования редокс превращений соединений, выступающих в качестве имитаторов природных ферментов, связаны с обнаружением и идентификацией активных форм (интермедиатов или продуктов реакции), обладающих каталитической активностью. Поэтому изучение окислительно-восстановительных свойств карбидодимерных тетрапиррольных комплексов высоковалентного железа, выявление зависимости структура-активность, остаются актуальными.

В настоящей работе представлены кинетические исследования редокс превращения µ-карбидодимерного тетра-4-*трет*-бутилфталоцианината железа(IV) С(Fe^{IV}Pc(^tBu)₄)₂ в присутствии *трет*-бутилгидропероксида (ТБГП) и трет-бутилпероксида (ТБП) в бензоле при 295 К.

$C(Fe^{IV}Pc(^{t}Bu)_{4})_{2} (R=4-^{t}Bu)$

кальных форм димерных металлопорфиринов.[6,12,19] В ИК спектре бензольного раствора комплекса С(Fe^{IV}Pc(^tBu)₄), полоса колебания мостиковой связи v(Fe=C=Fe) проявляется при 984 см⁻¹ (Рисунок 2). Добавление ТБП приводит к смещению этой полосы в низкочастотную область на 64 см⁻¹. Этот сдвиг возникает в результате изменения положения атома железа относительно координационной плоскости, вызванного

*µ-Карбидодимерный тетра-4-трет-бутилфталоциа*нинат железа(IV) синтезировали по известной методике.^[17] Конец реакции устанавливался по прекращению изменений в УФ-видимой части электронного спектра поглощения комплекса (ЭСП). Для очистки применяли метод колоночной

Экспериментальная часть

жидкостной адсорбционной хроматографии (оксид алюминия, элюент – дихлорметан) Выход C(Fe^{IV}Pc(${}^{t}Bu)_{4}$), 40 %. m/z(ESI-MS) 1597. ИК (НПВО, бензол) v см⁻¹: 984 (Fe=C=Fe). ЭСП С(Fe^{IV}Pc('Bu)₄)₂ (бензол) λ_{max} (lgɛ) нм: 633 (5.1). ¹Н ЯМР (CDCl₃, вн. ст. ГМДС) $\delta_{\rm H}$ м.д.: 8.12–8.03 м (8H, Ph), 7.61–7.27 м (16H, Ph), 2.23-2.14 м (72H, Ph).

трет-Бутилгидропероксид (ТБГП) 98 % и третбутилпероксид (ТБП) 98 % производства "Sigma-Aldrich".

Спектры ЭСП и ЯМР ¹Н регистрировали на приборах Cary 50 и Bruker Avance-500, соответственно. Масс-спектры (ESI-MS) регистрировали на масс-спектрометре Bruker microTOF с электроспрей-ионизацией.

ИК спектры регистрировали на ИК Фурье спектрометре Bruker Vertex 80 с помощью приставки Harrick MVP2 SeriesTM (материал призмы – алмаз) в области 4000-390 см⁻¹ (по 64 сканирований в среднем) с разрешением 2 см⁻¹ при комнатной температуре с использованием метода НПВО (нарушенного полного внутреннего отражения) в бензоле. Спектры образцов были сняты через 30-50 мин после добавления пероксида.

Для получения кинетических параметров и оптимизации величин $k_{v}, k_{s\phi}$ использовали методику.^[18] Реакцию проводили в осушенном бензоле при постоянной концентрации μ-карбидодимерного тетра-4-трет-бутилфталоцианината железа(IV) и различных концентрациях органического пероксида при 295 К. Эффективные константы скорости (k_{ab}) определяли по изменению оптической плотности раствора на рабочих длинах волн λ=635 и 675 нм, через определенные промежутки времени по уравнению формально первого порядка (1) при условии избытка пероксида:

$$k_{\rm ab} = 1/\tau \cdot \ln(c_0/c_{\rm T}) \tag{1}$$

Реакция С(Fe^{IV}Pc('Bu)₄)₂ (с=6.56·10⁻⁶ моль/л) с орга-

ническими пероксидами ($c_{\text{тыгп}} = 2.7 \cdot 10^{-5} \div 2.18 \cdot 10^{-2}$ моль/л,

с_{тып}=2·10⁻³-1.1·10⁻¹ моль/л) в бензоле идет во времени

и сопровождается изменением ЭСП комплекса с четко выраженными изобестическими точками. Для реакции

с ТБП наблюдается уменьшение интенсивности полосы при λ=633 нм с одновременным появлением полос при λ=596 нм и λ=671 нм. В случае реакции с ТБГП новые полосы появляются при λ=595 нм и λ=676 нм (Рисунок 1). Подобные изменения ЭСП продукта ре-

с₀, с₁ – концентрации µ-карбидодимерного тетра-4-*трет*бутилфталоцианината железа(IV) в моменты времени 0 и т, моль/л.

Результаты и обсуждение

30

Рисунок 1. Изменение ЭСП µ-карбидодимерного тетра-4-*трет*-бутилфталоцианината железа(IV) в ходе реакции с *трет*-бутилпероксидом ($c_{\text{тып}}$ =1.2·10⁻² моль/л, $c_{\text{С(Fe}^{\text{IV}}\text{Pec}^{\text{f}}\text{Bu})_{4/2}}$ =6.56·10⁻⁶ моль/л) в бензоле при 295 К.

образованием связи железо-кислород. В ИК спектре (при доминировании интенсивных колебаний макроцикла) появляются полосы при 535 см⁻¹ и 564 см⁻¹, соответствующие колебаниям v(Fe–O) в Fe–OR и в Fe–O–O. В оксигемоглобине колебания v(Fe–O₂) проявляются при 567 см⁻¹.^[12,20] Наблюдаемые изменения в ИК спектре, свидетельствуют о наличии в реакционной смеси соединения с кислородсодержащим лигандом OR и комплекса (ROOR)(Fe^{IV}Pc(^tBu)₄)₂C.

В ИК спектре C(Fe^{IV}Pc('Bu)₄)₂ с ТБГП наблюдается низкочастотный сдвиг полосы колебаний v(Fe=C=Fe) на 67 см⁻¹ и появление полосы с частотой 841 см⁻¹, характеризующей колебание v(Fe=O) (Рисунок 2) (в пероксидазе v(Fe=O)=787 см⁻¹, в (O)FeTPP v(Fe=O)=852 см⁻¹ ^[20]), что подтверждает существование в растворе оксокомплекса.

Образованию катион-радикальных форм µ-димерных макроциклических соединений под действием пероксидов предшествует быстрый процесс координационного связывания молекулы пероксида с катионом железа.^[4,6,12,21] В нашей реакции таким интермедиатом, в зависимости от природы пероксида, является донорно-акцепторный комплекс (ROOR)(Fe^{IV}Pc(¹Bu)₄)₂С или (ROO)(Fe^{IV}Pc(¹Bu)₄)₂С. Последующий гомолитический разрыв связи О–О в пероксо-комплексе приводит к образованию катион радикала. Эта стадия проходит во времени и является лимитирующей.

Согласно спектральным данным реакция одноэлектронного окисления µ-карбидодимерного тетра-4*терет*-бутилфталоцианината железа(IV) пероксидами описывается уравнениями 2, 3.

$$C(Fe^{IV}Pc(^{t}Bu)_{4})_{2} + ROOR \xrightarrow{kv} (RO)(Fe^{IV}Pc(^{t}Bu)_{4}^{**})$$
$$C(Fe^{IV}Pc(^{t}Bu)_{4}) \qquad (2)$$

 $Cl(Fe^{IV}Pc({}^{t}Bu)_{4})_{2}N + ROOH \xrightarrow{kv} [(O)(Fe^{IV}Pc({}^{t}Bu)_{4})_{4}^{+})$ $C(Fe^{IV}Pc({}^{t}Bu)_{4})]^{-} (3)$

Линейная зависимость концентрации комплекса от времени в координатах $\ln(c_0/c_{\tau})$ от $f(\tau)$ и удовлетворительное постоянство значений эффективной константы

Рисунок 2. ИК спектры (бензол): $C(Fe^{IV}Pc(Bu)_4)_2$ (a), $C(Fe^{IV}Pc(Bu)_4)_2$ с ТБП (b), $C(Fe^{IV}Pc(Bu)_4)_2$ с ТБГП (c) ($c_{C(Fe^{IV}Pc(Bu)_4)_2}$ = 6.56·10⁻⁶, $c_{TБП}$ =5.6·10⁻², $c_{TБГП}$ =2.18·10⁻³ моль/л).

скорости $(k_{_{3\phi}})$ (Рисунок 3, Таблица) свидетельствуют о том, что реакции 2, 3 идут в условиях первого порядка по комплексу. Порядок по пероксиду (n=1) и константа скорости реакции (Таблица 1) определены из линейной зависимости (Рисунок 4) по уравнению 4:

$$\lg k_{ab} = \lg k_{v} + n \lg [ROOR'], \tag{4}$$

где R'=^tBu, H.

С учетом полученных порядков по реагентам экспериментальное уравнение скорости реакции µ–карбидодимерного фталоцианината железа(IV) с органическими пероксидами имеет вид:

$$-dc_{C(Fe^{IV}Pc(^{t}Bu)_{4})_{2}}/d\tau = k_{v} \left[C(Fe^{IV}Pc(^{t}Bu)_{4})_{2}\right][ROOR']$$
(5)

Сравнение кинетических данных (Таблица 1) показывает, что скорость реакции с ТБГП в четыре раза выше таковой с участием ТБП. Это связано, во-первых,

Рисунок 3. Зависимость $\ln(c_0/c_{\tau})-f(\tau)$ реакции С(Fe^{IV}Pc(¹Bu)₄)₂ $(c_{C(Fe^{IV}Pc(^{1}Bu)_{4})_2}=6.56\cdot10^{-6}$ моль/л) с ТБП $(c_{TEП}=2.0\cdot10^{-3}$ моль/л (1), $1.2\cdot10^{-2}$ моль/л (2), $5.6\cdot10^{-2}$ моль/л (3), $1.1\cdot10^{-1}$ моль/л (4)).

Рисунок 4. Зависимость $k_{3\phi} - f(c_{\text{пероксид}})$ реакции C(Fe^{IV}Pc('Bu)₄)₂ с ТБГП (1); с ТБП (2).

Таблица 1. Кинетические параметры реакции C(Fe^{IV}Pc('Bu)₄)₂ (c_{μ -C(Fe^{IV}Pc('Bu)₄)₂=6.56·10⁻⁶ моль/л) с органическими пероксидами в бензоле при 295 К.

с _{тып} ·10 ² , моль/л	$k_{_{\!$
0.2	1.6
1.2	8.65
5.6	17.0
11.0	32.0
$k_{ m v}$ =1.55·10 ⁻² с ⁻¹ моль ⁻¹ л ¹	
$c_{_{\rm ТБГП}}10^2,$ моль/л	$k_{_{\!$
0.0027	1.245
0.0228	6.029
0.218	23.0
2.18	56.34
$k_v = 6.16 \cdot 10^{-2} \text{ c}^{-1}$ моль $^{-1}$ л ¹	

с тем, что ТБП по сравнению с ТБГП труднее координируется на атоме железа, за счет стерических помех, вызванных строением молекулы пероксида, во-вторых, ТБП является более устойчивым соединением, чем ТБГП, и гомолитический разрыв связи О–О в нем происходит медленнее.^[22]

32

Образующиеся в ходе реакции с ТБП и ТБГП катион-радикалы μ -карбидодимерного фталоцианината железа(IV) легко восстанавливаются в присутствии имидазола (Im) до нейтральной имидазолсодержащей формы (L)₂(Fe^{IV}Pc('Bu)₄)₂C^[6,13] (Рисунок 5). Эффективные константы скорости реакции формального первого порядка при постоянной концентрации комплекса коррелируют с концентрацией имидазола в диапазоне от 2.05·10⁻⁴ до 1.05·10⁻³ моль/л (Рисунок 6). Порядок по имидазолу, равный единице, и константу скорости восстановления (k_v =5·10⁻² с⁻¹моль⁻¹л¹ и 2.5·10⁻¹ с⁻¹моль⁻¹л¹ для (RO)(Fe^{IV}Pc('Bu)₄⁺⁺)C(Fe^{IV}Pc('Bu)₄) и [(O) (Fe^{IV}Pc('Bu)₄⁺⁺)C(Fe^{IV}Pc('Bu)₄)]⁻, соответственно) определяли из линейной зависимости lgk₃₉₆=lgk_v+nlg[Im]. Скорость реакции описывается уравнением:

$$-dc_{[\kappaатион-радикал]}/d\tau = k_v [катион-радикал][Im]$$
 (6)

Рисунок 5. Изменение ЭСП катион-радикальной формы µ-карбидодимерного тетра-4-*трет*-бутилфталоцианината железа(IV) (RO)(Fe^{IV}Pc('Bu)₄⁺⁺)C(Fe^{IV}Pc('Bu)₄) в реакции с имидазолом ($c_{C(Fe^{IV}Pc('Bu)_4)} = 6.56 \cdot 10^{-6}$ моль/л, $c_{TBI} = 1.2 \cdot 10^{-2}$ моль/л, $c_{Im} = 1.05 \cdot 10^{-3}$ моль/л).

Рисунок 6. Зависимость $k_{_{3\phi}} - f(c_{_{III}})$ реакции катион-радикала µ-карбидодимерного тетра-4-*трет*-бутилфталоцианината железа(IV) с имидазолом: [(O)(Fe^{IV}Pc('Bu)₄⁺⁺)C(Fe^{IV}Pc('Bu)₄)]⁻ (1); (RO)(Fe^{IV}Pc('Bu)₄⁺⁺)C(Fe^{IV}Pc('Bu)₄) (2) ($c_{C(Fe^{IV}Pc('Bu)_4)}$ =6.56·10⁻⁶ моль/л, $c_{_{TEГII}}$ =2.18·10⁻³ моль/л, $c_{_{TEГII}}$ =1.2·10⁻² моль/л).

Активность катион радикальной формы μ -карбидодимерного фталоцианината железа(IV) исследовали в реакции окисления ликопина в бензоле при 295 К. В отсутствии С(Fe^{IV}Pc('Bu)₄)₂ реакция ликопина с пероксидом протекает медленно. Конверсия ликопина за 24 часа составляет около 15 %. При добав-

лении комплекса окисление ликопина происходит в течение нескольких минут.

К катион радикальной форме µ-карбидодимерного фталоцианината железа(IV), которую фиксировали по прекращению изменений в ЭСП комплекса в присутствии ТБГП ($c_{C(Fe^{V}Pe(^tBu)_{4})}$ =6.56·10⁻⁶ моль/л, $c_{\rm TEFII} = 2.7 \cdot 10^{-3}$ моль/л), добавляли ликопин (с_{ликопин}=4.8·10⁻⁵÷1.23·10⁻⁴ моль/л). В ходе реакции наблюдали изменения оптической плотности на длинах волн при λ_{max} =457, 485 и 520 нм, до ее полного исчезновения в ЭСП (Рисунок 7). Эффективные константы скорости реакции формального первого порядка линейно зависят от концентрации ликопина. Величина тангенса угла наклона этой зависимости равна 1, что соответствует первому порядку по субстрату (Рисунок 8). С учетом полученных порядков по реагентам скорость реакции окисления ликопина описывается кинетическим уравнением (7) с константой скорости $k_{\mu} = 15.5 \text{ л}^1 \cdot \text{моль}^{-1} \cdot \text{с}^{-1}$.

 $-dc_{nukonuh}/d\tau = k_v c_{katuoh-pagukan} c_{nukonuh}$ (7)

Рисунок 7. Изменения ЭСП ликопина ($c_{_{ликопин}}$ =1.23·10⁻⁴ моль/л) в реакции с ТБГП ($c_{_{ТБГП}}$ =2.7·10⁻³ моль/л) в присутствии С(Fe^{IV}Pc(^tBu)₄)₂ ($c_{_{C(Fe^{IV}Pc(^{t}Bu)_{4})_{2}}$ =6.56·10⁻⁶ моль/л) во времени τ =665 с.

Рисунок 8. Зависимость $k_{_{3\phi}}$ -*f*($c_{_{ЛИКОПИН}}$) реакции катион-радикала µ-карбидодимерного тетра-4-*трет*-бутилфталоцианината железа(IV) [(O)(Fe^{IV}Pc('Bu)₄⁺⁺)C(Fe^{IV}Pc('Bu)₄)]⁻ с ликопином ($c_{C(Fe^{IV}Pc('Bu)_4)}$ =6.56·10⁻⁶ моль/л, $c_{_{ТБГП}}$ =2.7·10⁻³ моль/л, $c_{_{ЛИКОПИН}}$ =4.77·10⁻⁵÷1.23·10⁻⁴ моль/л).

Окисление ликопина сложный многостадийный процесс, протекающий через образование эпоксидов с дальнейшим разложением до аполикопиннов и аполикопиналов.^[23] На основании спектральных изменений, с учетом полученных кинетических параметров, можно предположить, что реакция протекает по Схеме 1.

Заключение

На основании вышеизложенного можно сделать вывод, что реакция µ-карбидодимерного фталоцианината железа(IV) с органическими пероксидами сопровождается четким спектральным откликом, катион-радикальную форму. характеризующим Одноэлектронному окислению по макроциклу предшествует реакция образования донорно-акцепторного пероксо-комплекса с последующим гомолитическим разрывом связи О-О в молекуле координированного пероксида. Скорость реакции окисления зависит органического пероксида. от природы Окисленная форма легко регенерируется в присутствии µ-Карбидодимерный имидазола. фталоцианинат железа(IV) проявляет хорошую каталитическую активность в реакции окисления ликопина третбутилгидропероксидом. Результаты работы могут быть полезны для обоснования механизмов окислительных процессов в биологических системах и поиска эффективных биомиметиков, моделирующих состав и активные центры природных ферментов.

Благодарности. Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 18-03-00617-а) с привлечением оборудования центра коллективного пользования Верхневолжского регионального центра физико-химических исследований.

µ-Carbido Diiron(IV) Tetra-4-tert-butylphthalocyaninate

Список литературы

References

- Kovaleva E.G., Neibergall M.B., Chakrabarty S. Acc. Chem. Res. 2007, 40, 475–483.
- Lippard S.J. Philos. Trans. R. Soc. London 2005, 363, 861–877.
 Sorokin A., Meunier B., Fraisse L. J. Mol. Catal. A: Chem.
- **1997**, *117*, 103–114.
- 4. Sorokin A.B., Kudrik E.V. Catal. Today 2011, 159, 37–46.
- Kudrik E.V., Sorokin A.B. J. Mol. Catal. A: Chem. 2017, 426, 499–505.
- 6. Zaitseva S.V., Simonova O.R., Zdanovich S.A., Kudrik E.V., Koifman O.I. *Macroheterocycles* **2014**, *7*, 55–59.
- Afanasiev P., Kudrik E.V., Albrieux F., Briois V., Koifman O.I., Sorokin A.B. *Chem. Commun.* 2012, 48, 6088–6090.
- Silaghi-Dumitrescu R., Uta M.M., Makarov S.V., Dereven'Kov I.A., Stuzhin P.A. New J. Chem. 2011, 35, 1140–1145.
- 9. Sorokin A.B., Tuel A. Catal. Today 2000, 57, 45–59.
- Geraskin I.M., Luedtke M.W., Neu H.M., Nemykin V.N., Zhdankin V.V. *Tetrahedron Lett.* 2008, 49, 7410–7412.
- Neu H.M., Yusubov M.S., Zhdankin V.V., Nemykin V.N. Adv. Synth. Catal. 2009, 351, 3168–3174.
- Simonova O.R., Zajceva S.V., Tyulyaeva E.Yu., Zdanovich S.A., Kudrik E.V. *Zh. Neorg. Khim.* 2017, 62, 509–518 (in Russ.).
- 13. Zajceva S.V., Zdanovich S.A., Kudrik E.V., Kojfman O.I. *Zh. Neorg. Khim.* **2017**, *62*, 1265–1273 (in Russ.).
- Rossi C., Goedken V.L., Ercolani C. J. Chem. Soc., Chem. Commun. 1988, 550, 46–47.

- Zanotti G., Angelini N., Notarantonio S., Paoletti A.M., Pennesi G., Rossi G., Lembo A., Colonna D., Carlo A.D., Reale A., Brown T.M., Calogero G. *Int. J. Photoenergy* 2010, 2010, Article ID 136807, 11 pages.
- Capobianchi A., Paoletti A.M., Rossia G. Sens. Actuators, B 2009, 142, 159–165.
- Kienast A., Galich L., Murray K.S., Moubaraki B., Lazarev G., Cashion J.D., Homborg H. J. Porphyrins Phthalocyanines 1997, 1, 141–157.
- Experimental Methods of Chemical Kinetics (Emanuehl N.M., Sergeev G.B., Eds.), Moscow: Vyssh. shk., **1980**. 375 p. (in Russ.) [Экспериментальные методы химической кинетики (Эмануэль Н.М., Сергеев Г.Б., ред.), М.: Высш. шк., **1980**. 375 с.].
- 19. Afanasiev P., Bouchu D., Kudrik E.V. Dalton Trans. 2009, 9828–9836.
- Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, **1986**. 484 р. [Накамото К. ИК-спектры и КР-спектры неорганических и координационных соединений (пер с англ.; Пентин Ю.А., ред) М.: Мир, **1991**. 535 с.].
- Colomban C., Kudrik E.V., Afanasiev P., Sorokin A.B. Catal. Today 2014, 235, 14–19.
- Antonovskij V.L., Hursan S.L. Physical Chemistry of Organic Peroxides. Moscow: IKC "Akademkniga", 2003. 391 p. (in Russ.) [Антоновский В.Л., Хурсан С.Л. Физическая химия органических пероксидов. М.: ИКЦ «Академкнига», 2003. 391 с.].
- 23. Carail M., Caris-Veyrat C. Pure Appl. Chem. 2006, 78, 1493– 1503.

Received 20.01.2018 Accepted 08.02.2018