DOI: 10.6060/mhc170300m

Моделирование молекулярных структур металломакрогетероциклических соединений 3*d*-элементов с производным 1,6-дитиа-8,9,14,15-тетраазациклогексадекатетраена-7,9,13,15 и галогенид-ионами методом DFT

О. В. Михайлов,^{а@} Д. В. Чачков^b

^аКазанский национальный исследовательский технологический университет, 420015 Казань, Россия ^bКазанское отделение Межведомственного Суперкомпьютерного центра Российской Академии Наук – филиал ФГУ «Федеральный научный центр НИИ системных исследований РАН», 420008 Казань, Россия [@]E-mail: olegmkhlv@gmail.com

Сиспользованием негибридного метода функционала плотности (DFT) в приближении OPBE/TZVP и программы Gaussian09 осуществлен расчет геометрических параметров гетеролигандных (5757) макротетрациклических комплексов Mn^{II} , Fe^{II} , Co^{II} , Ni^{II} , Cu^{II} и Zn^{II} , содержащих во внутренней координационной сфере макроциклический хелант–7,16-ди(метиламино)-10,13-диметил-бензо[c]-1,6-дитиа-8,9,14,15-тетраазациклогексадекатетраен-7,9,13,15 и ионы Hal⁻ (Hal – Cl, Br), с NSSN-координацией донорных центров хеланта. Приведены длины связей, валентные и отдельные невалентные углы между ними во всех этих комплексах с металлохелатным узлом MN_2S_2 . Показано, что ни в одном из них ни один 5-членный хелатный цикл не является строго плоским, хотя сами по себе эти циклы почти в каждом из этих комплексов (за исключением комплексов Co^{II}) идентичны друг другу. Оба образующихся в результате темплатной «сишвки» 7-членных металлоцикла обладают очень резко выраженной некомпланарностью, причем некомпланарность 7-членного цикла, содержащего два донорных атома азота. Отмечено также, что валентные углы между связями M–Hal ни в одном из этих комплексов не равны 180°, хотя и весьма близки к данной величине.

Ключевые слова: Молекулярная структура, макротетрациклический хелат, 3d-элемент, тетраазациклогексадекатетраен, галогенид-ион, DFT метод.

Modelling of Molecular Structures of Metalmacroheterocyclic Compounds of 3*d*-Elements with Derivative of 1,6-Dithia-8,9,14,15tetraazacyclohexadecatetraene-7,9,13,15 and Halide Ions Using DFT Method

O. V. Mikhailov,^{a@} and D. V. Chachkov^b

^aKazan National Research Technological University, 420015 Kazan, Russia

^bKazan Department of Joint Supercomputer Center of Russian Academy of Sciences – Branch of Federal State Institution "Scientific Research Institute for System Analysis of the Russian Academy of Sciences, 420008 Kazan, Russia @Corresponding author E-mail: olegmkhlv@gmail.com

The quantum-chemical calculation of the geometric parameters of molecular structures of M^{II} (5757)macroheterocyclic chelates (M = Mn, Fe, Co, Ni, Cu, Zn) with tetradentate ligand – 7,16-di(methylamino)-10,13-dimethylbenzo[c]-1,6-dithia-8,9,14,15-tetraazacyclohexadecatetraene-7,9,13,15 with chelate node MN_2S_2 and halide ions, has been performed using DFT OPBE/TZVP method.

Keywords: Molecular structure, macrotetracyclic chelate, 3d-element, tetraazacyclohexadecatetraene, halide ion, DFT method.

Введение

Ранее в^[1-9] нами посредством метода функционала плотности (DFT) был осуществлен квантово-химический расчет ряда (5454)-, (5555)- и (5656)макротетрациклических металлохелатов ионов М^{II} 3*d*-элементов (M=Mn, Fe, Co, Ni, Cu, Zn) с макроциклическими лигандами с замкнутым контуром, содержащих в своем составе два 5-членных и два 4-членных цикла, четыре 5-членных цикла, два 5-членных и два 6-членных цикла, соответственно, и отмечено, что (5555)макротетрациклические металлохелаты являются строго плоскими или же практически плоскими, в то время как (5454)- и (5656) макротетрациклические, напротив, некомпланарны (нередко с весьма значительным отклонением от компланарности). В связи с этим представляется интересным выяснить, каковыми в этом отношении окажутся (5757)макротетрациклические металлохелаты, например, общей формулы I с дитиатетраазамакроциклическим лигандом во внутренней координационной сфере, образующиеся согласно данным^[10,11] в результате темплатной реакции, описываемой обобщенным уравнением (*). В процитированных работах^[10,11] было отмечено образование лишь комплексов Ni^{II} и Cu^{II}; о возможности же формирования в результате аналогичных реакций комплексов какихлибо иных ионов М^{II} 3*d*-элементов не упоминается ни в этих, ни в каких-либо других работах, в том числе и в обзорах последних лет, посвященных структурной химии темплатных комплексов.^[12-15] В связи с этим представляется интересным осуществить квантово-химический расчет молекулярных структур металлохелатов типа I с использованием популярного ныне метода DFT, чтобы, с одной стороны, установить, могут ли металлохелаты данного типа образовываться также и другими ионами М^{II} 3*d*-элементов, и если да, то, с другой стороны, каковой окажется степень некомпланарности данных координационных соединений. Выяснению обоих этих вопросов, а также и детальному обсуждению специфики молекулярных структур (5757) макротетрациклических металлохелатов типа I и будет посвящена настоящая статья.

Макрогетероциклы / Macroheterocycles 2017 10(3) 380-385

Метод расчета

Для проведения квантово-химического расчета в данной работе был использован метод функционала плотности (DFT), сочетающий стандартный расширенный валентнорасщепленный базис TZVP^[16,17] и негибридный функционал ОРВЕ,^[18,19] который, согласно данным публикаций,^[20-23] в случае комплексов 3*d*-элементов дает достаточно точное соотношение энергетической стабильности высокоспинового состояния по отношению к низкоспиновому состоянию и в то же время надежно характеризует ключевые геометрические параметры молекулярных структур рассматриваемых нами металлокомплексов. Расчеты проводились по программе Gaussian09.^[24] Как и в более ранних наших работах, в частности процитированных выше,[1-9] соответствие найденных стационарных точек минимумам энергии во всех случаях доказывалось расчетом вторых производных энергии по координатам атомов; при этом все равновесные структуры, соответствовавшие точкам минимума на поверхностях потенциальной энергии, имели лишь вещественные положительные значения частот. При этом для комплексов Mn^{II} и Co^{II} рассматривались спиновые мультиплетности 2, 4 и 6, для комплекса Fe^{II} – мультиплетности 1, 3 и 5, для комплексов Ni^{II} и Zn^{II} – мультиплетности 1 и 3, для комплекса Cu^{II} – мультиплетности 2 и 4. Из оптимизированных при указанных мультиплетностях структур выбиралась та, которая обладала наименьшей энергией. Расчет параметров молекулярных структур при мультиплетностях, отличных от 1, всегда проводился неограниченным по спину методом UOPBE; при мультиплетности 1 – ограниченным по спину ОРВЕ. При мультиплетности 1 применялся также вариант расчета неограниченным методом, в сочетании с опцией GUESS=Mix; при этом получаемые результаты всегда были аналогичны результатам, получаемым с использованием ограниченного метода. Все квантово-химические расчеты были проведены в Казанском отделении Межведомственного суперкомпьютерного центра Российской академии наук – филиале Федерального государственного учреждения «Федеральный научный центр Научно-исследовательский институт системных исследований Российской академии наук» (http://kbjscc.knc.ru).

Результаты и их обсуждение

Данные о геометрических параметрах молекулярных структур комплексов типа I представлены в Таблице 1; отдельные из этих структур показаны на Рисунке 1. Сразу же отметим, что характер изменения аналогичных параметров этих структур при переходе от Mn к Zn для хлор- и бромсодержащих металлохелатов данного типа одинаков, поэтому здесь можно ограничиться обсуждением структур лишь одного из них, а именно для случая Hal=Cl. Начнем с того, что длины связей металл-азот (r(MN)) и металл-сера (r(MS)) в этих комплексах попарно равны, однако характер изменения значений r(MN) и r(MS) в ряду Fe – Zn оказывается различным (Таблица 1): для первых при переходе от Fe^{II} к Cu^{II} они монотонно снижаются, а при переходе от Cu^{II} к Zn^{II} – возрастают, для вторых при переходе от Fe^{II} к Ni^{II} они монотонно снижаются, от Ni^{II} к Cu^{II} - возрастают и при переходе от Cu^{II} к Zn^{II} вновь снижаются. Как можно видеть из Таблицы 1, в комплексах Cu^{II} как с хлорид-, так и с бромид-ионами отмечаются наиболее короткие связи M-N и наиболее длинные связи M–S. Что же касается химических связей между другими атомами, то, как и следовало ожидать, Modelling of Molecular Structures of Metalmacroheterocyclic Compounds

Таблица 1. Длины связей М–N и М–S, валентные и невалентные углы в комплексах типа I (в скобках приведены соответствующие значения для Hal=Br, без скобок – для Hal=Cl).

М	Mn	Fe	Со	Ni	Cu	Zn
Длины связей в хелатном узле MN_2S_2 , пм						
(M1N1)	219.9 (218.2)	218.8 (217.0)	212.9 (211.2)	211.2 (210.2)	209.4 (208.0)	215.1 (213.6)
(M1N2)	219.9 (218.2)	218.8 (217.0)	212.9 (211.2)	211.2 (210.2)	209.4 (208.0)	215.1 (213.6)
(M1S1)	263.7 (261.9)	246.8 (245.5)	244.2 (242.3)	237.1 (236.3)	266.8 (264.9)	260.0 (258.1)
(M1S2)	263.7 (261.9)	246.8 (245.5)	244.2 (242.1)	237.1 (236.3)	266.8 (264.9)	260.0 (258.1)
Валентные углы в хелатном узле MN ₂ S ₂ , град						
(S1M1S2)	90.5 (89.1)	91.5 (90.3)	88.9 (86.8)	87.7 (87.1)	84.5 (83.5)	88.0 (86.8)
(S2M1N1)	77.3 (77.8)	79.4 (79.9)	80.6 (81.0)	81.9 (82.3)	78.0 (78.6)	78.9 (79.5)
(N1M1N2)	119.8 (120.3)	114.5 (115.1)	114.4 (115.6)	113.0 (113.0)	124.5 (124.6)	118.9 (119.1)
(N2M1S1)	77.3 (77.8)	79.4 (79.9)	80.6 (81.4)	81.9 (82.3)	78.0 (78.6)	78.9 (79.5)
VAS	364.9 (365.0)	364.8 (365.2)	364.5 (364.8)	364.5 (364.7)	365.0 (365.2)	364.7 (364.9)
Невалентные углы в группировке N ₂ S ₂ , град						
(S1S2N1)	88.1 (88.5)	88.9 (89.1)	89.3 (88.7)	90.0 (90.0)	88.6 (88.9)	88.6 (88.8)
(S2N1N2)	87.1 (86.5)	86.2 (85.8)	86.3 (86.0)	85.5 (85.3)	86.4 (86.0)	86.9 (86.4)
(N1N2S1)	87.1 (86.5)	86.2 (85.8)	86.3 (83.7)	85.5 (85.3)	86.4 (86.0)	86.9 (86.4)
(N2S1S2)	88.1 (88.5)	88.9 (89.1)	89.3 (90.4)	90.0 (90.0)	88.6 (88.9)	88.6 (88.0)
NVAS	350.4 (350.0)	350.2 (349.8)	351.2 (348.8)	351.0 (350.6)	350.0 (349.7)	351.0 (350.4)
Валентные углы в 5-членном хелатном цикле 1, град						
(M1N1N5)	123.3 (123.3)	120.8 (120.8)	120.7 (120.3)	119.8 (119.6)	124.6 (124.4)	122.2 (122.0)
(N1N5C3)	117.6 (117.7)	117.5 (117.6)	117.8 (117.5)	117.7 (117.8)	118.4 (118.4)	118.3 (118.4)
(N5C3S2)	126.1 (125.9)	124.3 (124.1)	123.9 (124.1)	123.3 (123.2)	125.7 (125.5)	125.9 (125.7)
(C3S2M1)	91.7 (91.8)	94.5 (94.4)	93.9 (93.4)	94.7 (94.6)	89.8 (89.9)	91.0 (91.1)
(S2M1N1)	77.3 (77.8)	79.4 (79.9)	80.6 (81.4)	81.9 (82.3)	78.0 (78.6)	78.9 (79.5)
VAS ⁵¹	536.0 (536.5)	536.5 (536.8)	536.9 (536.7)	537.4 (537.5)	536.5 (536.7)	536.3 (536.7)
Валентные углы в 5-членном хелатном цикле 2, град						
(M1N2N3)	123.3 (123.3)	120.8 (120.8)	120.6 (121.6)	119.8 (119.6)	124.6 (124.4)	122.2 (122.0)
(N2N3C1)	117.6 (117.7)	117.5 (117.6)	117.8 (117.3)	117.7 (117.8)	118.4 (118.4)	118.3 (118.4)
(N3C1S1)	126.1 (125.9)	124.3 (124.1)	123.9 (123.5)	123.3 (123.2)	125.7 (125.5)	125.9 (125.7)
(C1S1M1)	91.7 (91.8)	94.5 (94.4)	93.9 (95.0)	94.7 (94.6)	89.8 (89.9)	91.0 (91.1)
(S1M1N2)	77.3 (77.8)	79.4 (79.9)	80.6 (81.0)	81.9 (82.3)	78.0 (78.6)	78.9 (79.5)
VAS ⁵²	536.0 (536.5)	536.5 (536.8)	536.8 (538.4)	537.4 (537.5)	536.5 (536.7)	536.3 (536.7)
Валентные углы в 7-членном хелатном цикле 1, град						
(M1N1C5)	118.3 (118.7)	122.6 (122.9)	123.2 (122.8)	124.1 (124.7)	117.7 (118.2)	119.8 (120.4)
(N1C5C10)	116.2 (116.2)	116.5 (116.6)	117.2 (117.3)	116.9 (117.1)	117.2 (117.3)	116.5 (116.5)
(C5C10C9)	117.3 (117.3)	116.2 (116.1)	116.1 (116.3)	115.1 (115.1)	117.2 (117.3)	116.8 (116.7)
(C10C9C6)	117.3 (117.3)	116.2 (116.1)	116.1 (114.9)	115.1 (115.1)	117.2 (117.3)	116.8 (116.7)
(C9C6N2)	116.2 (116.2)	116.5 (116.6)	117.2 (116.6)	116.9 (117.1)	117.2 (117.3)	116.5 (116.5)
(C6N2M1)	118.3 (118.7)	122.6 (122.9)	123.2 (123.4)	124.1 (124.7)	117.7 (118.2)	119.8 (120.4)
(N2M1N1)	119.8 (120.3)	114.5 (115.1)	114.4 (115.6)	113.0 (113.0)	124.5 (124.6)	118.9 (119.1)
VAS ⁷¹	823.4 (824.7)	825.1 (826.3)	827.4 (826.9)	825.2 (826.8)	828.7 (830.2)	825.1 (826.3)
Валентные углы в 7-членном хелатном цикле 2, град						
(M1S1C12)	97.7 (99.3)	101.5 (102.7)	103.3 (104.0)	104.8 (105.6)	100.9 (102.3)	99.6 (100.8)
(S1C12C13)	111.7 (111.7)	112.4 (112.4)	111.9 (111.5)	111.5 (111.6)	111.3 (111.5)	111.2 (111.2)
(C12C13C14)	126.2 (126.1)	126.2 (126.1)	125.9 (125.4)	125.5 (125.5)	125.4 (125.3)	125.7 (125.6)
(C13C14C11)	126.2 (126.1)	126.2 (126.1)	125.9 (125.5)	125.5 (125.5)	125.4 (125.3)	125.7 (125.6)
(C14C11S2)	111.7 (111.7)	112.4 (112.4)	111.9 (112.2)	111.5 (111.5)	111.3 (111.5)	111.2 (112.2)
(C11S2M1)	97.7 (99.3)	101.5 (102.8)	103.3 (105.6)	104.8 (105.6)	100.9 (102.3)	99.6 (100.8)
(S2M1S1)	90.5 (89.1)	91.5 (90.3)	88.9 (86.8)	87.7 (87.1)	84.5 (83.5)	88.0 (86.8)
VAS ⁷²	761.7 (763.3)	771.7 (772.8)	771.1 (771.0)	771.3 (772.4)	759.7 (761.7)	761.0 (762.0)

Макрогетероциклы / Macroheterocycles 2017 10(3) 380-385

в каждом из рассматриваемых нами комплексов аналогичные связи (как, например, C6C9 и C10C5, N3N2 и N1N5, S1C1 и C3S2) оказываются равными другу. Длины же связей в шестичленном «бензольном кольце», примыкающем к 7-членному хелатному циклу с двумя донорными атомами S, как и предполагалось, оказываются практически независимыми от природы комплексообразователя M^{II}; так, для связей (C15C17), (C17C18) и (C18C16) они в каждом из рассматриваемых нами (5757)макротетрациклических металлохелатов с Hal=Cl составляют 139.1, 139.0 и 139.1 пм, соответственно.

Как и в случае (5656)макротетрациклических хелатов, ни в одном из этих комплексов хелатный узел MN_2S_2 не является строго плоским, хотя величина отклонения суммы валентных углов (S1M1S2), (S2M1N1), (N1M1N2) и (N2M1S1) (VAS) от значения 360°, отвечающего строго плоскостной ориентации атомов N и S относительно комплексообразователя M^{II} , и сравнительно мала – не более 5° (Таблица 1). При этом, что характерно, в каждом из рассматриваемых нами комплексов типа I значение VAS оказывается более чем 360°, так что можно говорить пусть о слабо выраженной, но все же псевдотетраэдрической координации донорных центров макроциклического тетрадентатного лиганда относительно M^{II} . Группировка же из четырех донорных атомов азота и серы N_2S_2 в этих металлохелатах также не является

плоской [сумма углов (S1S2N1), (S2N1N2), (N1N2S1) и (N2S1S2) в каждом из них отличается от суммы внутренних углов в плоском четырехугольнике (360.0°) как минимум почти на 9°]. Имеющиеся в каждом из этих комплексов два 7-членных металлохелатных цикла опятьтаки некомпланарны; более того, степень такого отклонения от компланарности для каждого из этих циклов в одном и том же комплексе весьма различна, что можно заметить даже на изображениях молекулярных структур рассматриваемых комплексов, приведенных на Рисунке 1 и уж тем более из данных Таблицы 1, поскольку суммы валентных углов в этих циклах, а именно VAS^{71} и VAS^{72} , всякий раз весьма значительно – более чем на 50° (!) – отличаются друг от друга [823.4° и 761.7° - в хелате марганца(II), 825.1° и 771.7° – в хелате железа(II), 827.4° и 771.1° – в хелате кобальта(II), 825.2° и 771.3° – в хелате никеля(II), 828.7° и 769.7° – в хелате меди(II), 825.1° и 761.0° - в хелате цинка(II)] (Таблица 1). При этом бросается в глаза чрезвычайно высокая – более 120° (!!) - степень отклонения от компланарности металлохелатных циклов, содержащих два донорных атома серы, которая пока что не отмечалась ни в одном из рассматривавшихся нами до сих пор макроциклических металлохелатов, представленных, в частности, в [12-14]. Стоит отметить и то, что в обоих этих 7-членных циклах имеются по три пары равных друг другу валентных

Рисунок 1. Молекулярные структуры металлохелатов типа I: $\mathbf{a} - Mn^{II}$ с хлорид-ионом, $\mathbf{6} - Fe^{II}$ с хлорид-ионом, $\mathbf{b} - Co^{II}$ с бромид-ионом, $\mathbf{r} - Zn^{II}$ с бромид-ионом.

углов, а именно (M1N1C5) и (C6N2M1), (N1C5C10) и (C9C6N2), (C5C10C9) и (C10C9C6) в цикле с двумя донорными атомами азота и (M1S1C12) и (C11S2M1), (S1C12C13) и (C14C11S2), (C12C13C14) и (C13C14C11) в цикле с двумя донорными атомами серы. Любопытно, что в 7-членном цикле хелата Cu^{II}, в котором содержатся донорные атомы азота, имеет место не только указанное выше попарное равенство, но даже и равенство между собой двух пар валентных углов (N1C5C10) и (C9C6N2), (C5C10C9) и (C10C9C6) (по 117.2° каждый). Что же касается 5-членных металлоциклов, то и они в каждом из рассматриваемых здесь металлохелатов также не являются плоскими, хотя степень отклонения их от компланарности здесь гораздо меньше, чем для 7-членных циклов [суммы валентных углов VAS^{51} и VAS^{52} в любом из них отличаются от суммы внутренних углов плоского пятиугольника (540°) не более чем на 4°]; при этом в 5-членных циклах все углы различны между собой. При этом во всех рассматриваемых нами металлохелатах типа I эти циклы совершенно идентичны друг другу по значениям валентных углов. Единственным небольшим исключением здесь оказывается хелат Со^{II}, в котором у одного из этих циклов сумма валентных углов VAS 51 на 0.1° превосходит сумму валентных углов VAS⁵² (Таблица 1). Говоря же о валентных углах вне этих самых циклов, заметим, что они сравнительно мало зависят от природы комплексообразователя М^{II}, что, впрочем, представляется вполне ожидаемым.

Сопоставляя между собой металлохелаты типа I с одними и теми же ионами М^{II}, но различными Hal, нельзя не заметить, что природа галогенид-иона в определенной степени тоже сказывается на структурных параметрах этих металлохелатов. Так, длины связей r(MHal) почти во всех этих комплексах, как и следовало ожидать, равны между собой (в комплексах Mn^{II} по 250.0 и 269.9 пм, в комплексах $\mathrm{Fe^{II}}$ – по 243.8 и 262.7 пм, в комплексах Ni^{II} – по 244.1 и 261.6 пм, в комплексах Cu^{II} – по 237.6 и 256.7 пм и в комплексах Zn^{II} – по 246.0 и 265.8 пм). Однако в комплексах Со^{II} эти длины отличаются друг от друга, причем в случае Hal=Br весьма значительно [243.1 для связи (M1Cl1) и 243.0 для связи (M1Cl2), 275.3 пм для связи (M1Br1), 253.7 пм – для связи (M1Br2)]; причины этого пока непонятны. Интересно, что валентный угол между атомами металла и галогенов (Cl1M1Cl2) [177.8° в случае хелата Mn^{II}, 179.5° - Fe^{II}, 179.4° - Co^{II}, 179.6° - Ni^{II}, 178.8° - Cu^{II}, 177.8° – Zn^{II}] и (Br1M1Br2) [178.9° в случае хелата Mn^{II}, 178.6° - Fe^{II}, 176.6° - Co^{II}, 178.7° - Ni^{II}, 179.7° - Cu^{II}, 178.9° - Zn^{II}] ни в одном из рассматриваемых нами комплексов не равен точно 180°, хотя и весьма близок к этому значению; характерно, что в случае хелатов Mn^{II}, Си^{II} и Zn^{II} угол (Cl1M1Cl2) меньше угла (Br1M1Br2), в случае же хелатов Fe^{II}, Co^{II} и Ni^{II} – больше (Таблица 1). С другой стороны, обращает на себя внимание то обстоятельство, что степень некомпланарности как хелатного узла MN₂S₂, так и группировки донорных атомов N₂S₂ для одного и того М в бромидном комплексе, пусть и незначительно, но все же всегда выше, чем в хлоридном, тогда как для металлохелатных циклов (как 5-, так и 7-членных) в подавляющем большинстве случаев имеет место обратное соотношение. Исключением здесь

являются 7-членные металлоциклы в комплексах Со^{II}, некомпланарность которых в случае Hal=Cl выражена несколько сильнее, чем в случае Hal=Br (Таблица 1).

Подводя итоги обсуждения структурно-геометрических параметров, рассматриваемых нами хелатов типа I, отметим, что все они, как можно видеть из Рисунка 1, совершенно асимметричны. В связи с этим для них вполне естественным было бы ожидать весьма высоких значений электрического дипольного момента (µ). Однако результаты проведенного нами расчета указанного параметра для хлоридных [1.72 (Mn), 1.85 (Fe), 2.07 (Co), 2.09 (Ni), 1.66 (Cu) и 1.67 (Zn) ед. Дебая] и бромидных [1.92 (Мп), 1.99 (Fe), 2.28 (Со), 2.17 (Ni), 1.82 (Cu) и 1.84 (Zn) ед. Дебая] комплексов I свидетельствуют об ином положении дел; при этом, как можно видеть из приведенных данных, в ряду Mn-Zn при переходе от Mn к Ni электрический момент диполя возрастает, от Ni к Cu – убывает и от Cu к Zn – вновь возрастает, хотя и в весьма незначительно.

Основным состоянием рассматриваемых нами (5757)макротетрациклических хелатов Мп^{II}, Fe^{II}, Co^{II} и Ni^{II} типа I является спиновый секстет, спиновый квинтет, спиновый квартет и спиновый триплет, соответственно; как можно видеть из сказанного, поименованные четыре хелата принадлежат к числу высокоспиновых комплексов. Основным состоянием хелатов Cu^{II} и Zn^{II} в полном соответствии с теоретическими ожиданиями являются спиновый дублет и спиновый синглет, соответственно. Заметим, что в пяти из шести рассматриваемых нами координационных соединений различие по энергии между основным состоянием и ближайшим возбужденным состоянием с иной спиновой мультиплетностью [спиновым квартетом в случае Mn^{II}, спиновым синглетом в случае Fe^{II} и Ni^{II}, спиновым квартетом в случае Cu^{II} и спиновым триплетом в случае Zn^{II}] весьма значительно (147.8 и 104.6, 46.2 и 38.3, 85.5 и 73.5, 213.0 и 203.5, 201.0 и 209.1 кДж/моль для Hal=Cl и Br, соответственно). Лишь в комплексе Co^{II} различие по энергии между основным и ближайшим возбужденным состояниями (спиновым квартетом и спиновым дублетом) гораздо меньше – всего лишь 10.2 и 9.2 кДж/моль, соответственно, что делает вполне вероятным проявление спиновой изомерии (спин-кроссовера). Как можно видеть, комплекс Со^{II} выделяется на фоне остальных рассматриваемых нами комплексов типа I не только в структурном, но и в магнетохимическом отношении.

Заключение

Как можно видеть из всего изложенного выше, для рассматриваемых нами ионов 3*d*-элементов, а именно Mn^{II}, Fe^{II}, Co^{II}, Ni^{II}, Cu^{II} и Zn^{II}, типичным при их комплексообразовании с 7,16-ди(метиламино)-10,13-диметилбензо[*c*]-1,6-дитиа-8,9,14,15-тетраазацик логексадекатетраеном-7,9,13,15 и галогенид-анионами оказывается формирование хелатного узла MN_2S_2 со слабо выраженной тетраэдрической координацией атомов азота и серы к соответствующему комплексообразователю M^{II}. Образующиеся при этом металлохелаты характеризуются весьма резко выраженной некомпланарностью, что наиболее отчетливо проявляется в случае 7-членных циклов, которые, в отличие от 5-членных циклов, по этому параметру весьма резко различаются меж собой. Только что отмеченное обстоятельство представляется нам, впрочем, вполне прогнозируемым, если принять во внимание давно и хорошо известный в органической химии факт, что гетероциклы с семью и бо́льшим числом атомов в подавляющем большинстве случаев оказываются некомпланарными. В то же время в качественном отношении молекулярные структуры гетеролигандных металлохелатов рассматриваемых М^{II} с поименованным выше макроциклическим лигандом и ионами Hal⁻ очень похожи друг на друга; практически не сказывается на этой похожести и природа галогена, образующего только что указанный ацидолиганд.

Список литературы

References

- Chachkov D.V., Mikhailov O.V. Russ. J. Inorg. Chem. 2014, 59, 349–354.
- Chachkov D.V., Mikhailov O.V. Russ. J. Inorg. Chem. 2013, 58, 1315–1320.
- 3. Mikhailov O.V., Chachkov D.V. *Inorg. Chim. Acta* **2013**, *408*, 199–203.
- 4. Chachkov D.V., Mikhailov O.V. *Macroheterocycles* **2009**, *2*, 271–274.
- Mikhailov O.V., Chachkov D.V. J. Coord. Chem. 2010, 63, 4309–4318.
- Chachkov D.V., Mikhailov O.V. Russ. J. Inorg. Chem. 2012, 57, 981–986.

- Chachkov D.V., Mikhailov O.V. Russ. J. Inorg. Chem. 2013, 58, 174–179.
- Chachkov D.V., Mikhailov O.V. Russ. J. Gen. Chem. 2013, 83, 2027–2030.
- Mikhailov O.V., Chachkov D.V. Russ. J. Inorg. Chem. 2015, 60, 1117–1122.
- Jones C.J., McCleverly J.A. J. Chem. Soc. 1970A, 17, 2829– 2836.
- Gerbeleu N.V., Arion V.B. Template Synthesis of Macrocyclic Compounds. Kishineu: Stiinta, 1990. 372 р. (in Russ.) [Гэрбэлэу Н.В., Арион В.Б. Темплатный синтез макроциклических соединений. Кишинев: Штиинца, 1990. 372 с.].
- 12. Mikhailov O.V. Inorg. Chim. Acta 2013, 394, 664-684.
- Mamardashvili G.M., Mamardashvili N.Z., Koifman O.I. Russ. Chem. Rev. 2008, 77, 59–75.
- 14. Mikhailov O.V., Kazymova M.A., Chachkov D.V. *Russ. Chem. Bull.* **2015**, *64*, 1757–1771.
- 15. Mikhailov O.V. Arab. J. Chem. 2017, 10, 47-67.
- Schaefer A., Horn H., Ahlrichs R. J. Chem. Phys. 1992, 97, 2571–2577.
- Schaefer A., Huber C., Ahlrichs R. J. Chem. Phys. 1994, 100, 5829–5835.
- Hoe W.-M., Cohen A., Handy N.C. Chem. Phys. Lett. 2001, 341, 319–328.
- Perdew J.P., Burke K., Ernzerhof M. Phys. Rev. Lett. 1997, 78, 1396–1397.
- Paulsen H., Duelund L., Winkler H., Toftlund H., Trautwein A.X. Inorg. Chem. 2001, 40, 2201–2203.
- Swart M., Groenhof A.R., Ehlers A.W., Lammertsma K. J. Phys. Chem. A 2004, 108, 5479–5483.
- Swart M., Ehlers A.W., Lammertsma K. Mol. Phys. 2004, 102, 2467–2474.
- 23. Swart M. Inorg. Chim. Acta 2007, 360, 179–189.
- 24. Frisch M.J, Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.

Received 13.03.2017 Accepted 23.09.2017