
402 © ISUCT Publishing                  Макрогетероциклы / Macroheterocycles 2016 9(4) 402-405

DOI: 10.6060/mhc161174v

Communication
Сообщение

Clathrochelates
Клатрохелаты

Template Synthesis and X-Ray Structure of the First Cobalt(II) 
Glyoximate Clathrochelate with Terminal Formyl Groups

Genrikh E. Zelinskii,a Alexander S. Belov,a Anna V. Vologzhanina,a  
Valentin V. Novikov,a Alexander A. Pavlov,a Yan V. Zubavichus,b  
and Yan Z. Voloshina,c@

aNesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119991 Moscow, Russia
bNational Research Center ‘‘Kurchatov Institute’’, 123182 Moscow, Russia
cI.M. Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia
@Corresponding author E-mail: voloshin@ineos.ac.ru 

Cobalt(II) tris-glyoximate clathrochelate CoGm3(B4-C6H4CHO)2 with terminal reactive formyl group was obtained 
in moderate yield using direct template cross-linking of three molecules of glyoxime with 4-formylphenylboronic acid 
on a cobalt(II) ion as a matrix. Its molecular structure has been determined using single-crystal X-ray diffraction 
experiment.
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Трис-глиоксиматный клатрохелат кобальта(II) с терминальными реакционноспособными формильными 
группами был получен прямой темплатной сшивкой трех молекул глиоксима 4-формилфенилборной кислотой 
на ионе кобальта(II) как матрице. Молекулярная структура соединения была установлена методом РСА.

Ключевые слова: Макроциклические соединения, клатрохелаты, темплатная конденсация.

Mono- and binuclear clathrochelate complexes with func-
tionalizing apical and ribbed substituents containing terminal 
donor groups such as pyridine, carboxylic or cyano groups as 
prospective rigid and robust macrobicyclic ligands towards 
transition and main groups metal ions are reported in [1-6] allow-
ing to obtain a wide range of nanosized heterometallic clath-
rochelate-based metallomacrocycles, coordination polymers 

and cages. On the other hand, the formyl-terminated clathro-
chelates seems to be suitable ligand synthones or monomers 
for the design and synthesis of the imine coordination cages 
and coordination polymers and their amine derivatives as well. 
Moreover, the reactivity of their terminal formyl groups can 
be used for preparation of cage complexes with vector sub-
stituents, allowing their target delivery for a given biosystem. 
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Very recently, the corresponding mononuclear tris-glyoximate 
iron(II) clathrochelates[7] and their aliphatic tris-dioximate 
analogs,[8] as well as the homobinuclear manganese(II) and 
cobalt(II) 4-formylphenylboron-capped clathrochelates[8] have 
been prepared and X-ray structurally characterized. Among 
them, the binuclear cage complexes are reported in [4] to be 
prospective for production of magnetic materials: for example, 
the binuclear cobalt(II) clathrochelates with pendant carbox-
ylic acid groups showed high-spin state of their encapsulated 
cobalt(II) ions. In this work we report the synthesis and X-ray 
structure of the first mononuclear macrobicyclic cobalt(II) tris-
glyoximate with terminal formyl groups.

Like its iron(II)-encapsulating analog[7] 4-formyl-
phenylboron-capped cobalt(II) clathrochelate CoGm3(B4-
C6H4CHO)2 was obtained in moderate yield under vigorous 
reaction conditions (in boiling nitromethane as a solvent) 
by Scheme 1 using direct template cross-linking of three 
molecules of glyoxime with 4-formylphenylboronic acid 
on a cobalt(II) ion as a matrix.[9] Despite that an iron(II) ion 
is known in literature to be the most efficient template for 
such self-assembly than a cobalt(II) ion,[10] the yields of these 
clathrochelate derivatives of the same caging ligand were 
almost the same (65 vs. 62 %, respectively).

Scheme 1.

The complex obtained was characterized using elemen-
tal analysis, MALDI-TOF mass spectrometry, IR, 1H NMR 
spectroscopy, and by single-crystal X-ray diffraction.[9] 

The most intense peak in the positive range of the 
MALDI-TOF mass spectrum of this cobalt(II) clathrochelate 
belongs to its molecular ion. 

The obtained paramagnetic shift values were analyzed 
as a difference between the chemical shifts in the NMR 
spectra of the paramagnetic cobalt(II)- and diamagnetic 
iron(II)-encapsulating clathrochelate analogs. The low-spin 
cobalt(II) ion can give rise to both the contact and pseudo-
contact paramagnetic shifts due to the direct spin delocaliza-
tion and the dipolar interaction, respectively. In order to fully 
quantitatively describe the NMR data, quantum chemical 
(DFT) calculations of molecular geometry and spin density 
distribution were carried out.[9] According to the calculations 
the origin of paramagnetic shifts is different for various pro-
tons in a molecule: glyoxime protons are characterized by 
significant contact shifts (~90 ppm) owing its nearness to 
the paramagnetic cobalt(II) ion while paramagnetic shifts of 

Figure 1. Correlation plot of experimental and calculated 1H NMR 
chemical shifts.

Figure 2. General view of the molecule CoGm3(B-4-C6H4CHO)2 
in representation of atoms with thermal ellipsoids (given with 
p=50 %).

Figure 3. Formation of the π...π-bonded clathrochelate dimers in 
the crystal CoGm3(B4-C6H4CHO)2·0.5CH2Cl2.
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the apical substituents have the pseudocontact nature, due to 
their remoteness from the metal ion.

Good convergence (R2=0.976) of experimental para-
magnetic shifts and DFT calculated contact shifts (Figure 1) 
allowed us to clearly assign the signals of 1H NMR spec-
trum. The number and positions of the signals in the solu-
tion 1H NMR spectrum of the cage complex as well as the 
ratios of the integral intensities confirm the composition of 
this clathrochelate.

Molecular structure of the complex CoGm3(B4-
C6H4CHO)2 is shown in Figure 2; the main geometrical pa-
rameters of its clathrochelate framework as well as those for 
its iron(II)-encapsulating analogue FeGm3(B4-C6H4CHO)2 
are listed in Table 1. 

Due to the rigidity of the chelate N=C–C=N fragments, 
the bite (chelate) angles α and the main distances in their mac-
robicyclic framework persist, whereas the geometries of MN6-
coordination polyhedra are strongly affected by the nature  
of an encapsulated metal ion, first of all, due to the distortion 
of these polyhedra around the molecular C3-pseudoaxis {the 
distortion angle φ is equal to 0° for a trigonal prism (TP) 
and to 60° for a trigonal antiprism (TAP)}. TAP geometry is 
energetically preferable for the low-spin electronic configu-
rations d6 and d7, whereas in the case of the diboron-capped 
polyazomethine quasiaromatic tris-dioximates an encapsula-
tion of a metal ion causes a TP distortion of this geometry 
due to a small Shannon radius of their capping boron atoms. 
As a result, the geometries of FeN6-coordination polyhedra 
in the two polymorphs of FeGm3(B4-C6H4CHO)2 were found 
in [7] to be intermediate between a TP and a TAP (φ=12.2 
and 18.8° at the heights h of these TP–TAP polyhedra of 
2.36 and of 2.37 Å, respectively), while CoN6-coordination 
polyhedron of an encapsulated cobalt(II) ion in the molecule 

CoGm3(B4-C6H4CHO)2 possesses an almost TP geometry 
(φ=1.2° at h=2.44 Å, Table 1). 

A caged iron(II) ion in the molecule FeGm3(B4-
C6H4CHO)2 was found in [7] to be situated almost in the cen-
tre of its FeN6-coordination polyhedron, while the above 
cobalt(II) ion is shifted from the centre of CoN6-polyhedron 
in the direction of two of the three ribbed glyoximate che-
late fragments due to the structural Jahn–Teller distortion 
of its low-spin electronic configuration d7. Such low-spin 
state of the cobalt(II) clathrochelates can be stabilized by 
the crystal packing effects.[11-13] In the crystal CoGm3(B4-
C6H4CHO)2·0.5CH2Cl2, the observed π...π stacking between 
N=C–C=N chelate fragments of its neighboring macrobicy-
clic molecules, forming a clathrochelate dimer (Figure 3), 
cause the shortening of the corresponding coordination Co–N 
bonds, while the third ribbed chelate fragment of these inter-
acting macrobicyclic molecules of CoGm3(B4-C6H4CHO)2, 
showing the greatest Co–N distances, is not included in such 
bonding.
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