Особенности ионизации, фрагментации и ассоциации (макробициклизации) псевдоклатрохелатных

mpuc-пиразолоксиматов цинка, кобальта, железа и марганца(II) в условиях LDI масс-спектрометрического эксперимента

С. В. Кац,^а О. В. Севериновская,^ь О. А. Варзацкий,^с Е. Г. Лебедь,^{d@} В. А. Павленко^а

Основным путем ионизации комплексов $[M(HPzOx)_3(BC_0H)]Cl$ является гетеролитическая диссоциация этих ионных ассоциатов с образованием хлорид-ионов и борсодержащих трис-пиразолоксиматных катионов $[M-Cl^-]^+$. Последние являются термодинамически неустойчивыми вследствие разрушения псевдомакробициклической структуры и претерпевают дальнейшую фрагментацию, приводящую к образованию соответствующих частиц и кластерных ионов. Диссоциативный тип ионизации, в результате которой образуются комплексные катионы, свидетельствует о достаточной прочности координационных связей M-N. В спектрах схожих по строению оксимгидразонатных макробициклических комплексов наблюдаются интенсивные пики, соответствующие клатрохелатным макробициклическим катионам; для их трис-диоксиматных аналогов характерно образование ион-молекулярных ассоциатов с катионами щелочных металлов. LDI массспектры изученных борсодержащих трис-пиразолоксиматных комплексов не содержат соответствующие молекулярные ионы и его ассоциаты с катионами щелочных металлов, но наблюдается отщепление псевдосшивающего хлорид-иона как основной путь их фрагментации. Образующиеся немакроциклические триспиразолоксиматные частицы неустойчивы и, либо претерпевают фрагментацию с отщеплением одного из трех реберных хелатирующих фрагментов, либо, как триподные трис-пиразольные лиганды, координируются к иону соответствующего металла, образуя необычные биядерные комплексы.

Ключевые слова: Макроциклические соединения, клатрохелаты, инкапсулирование, комплексы переходных металлов, масс-спектры, ионизация, фрагментация, ассоциация.

The Peculiarities of Ionization, Fragmentation and Association (Macrobicyclization) of Pseudoclathrochelate *tris*-Pyrazoloximates of Zinc(II), Cobalt(II), Iron(II) and Manganese(II) in the LDI Mass Spectra

Svitlana V. Kats,^a Olga V. Severynovskaya,^b Oleg A. Varzatskii,^c Ekaterina G. Lebed,^{d@} and Vadim A. Pavlenko^a

^аКиевский национальный университет им. Тараса Шевченко, 01601 Киев, Украина

^ьИнститут химии поверхности им. А.А. Чуйко НАН Украины, Киев, 03164 Киев, Украина

^сИнститут общей и неорганической химии им. В.И. Вернадского НАН Украины, 03680 Киев, Украина

^dИнститут элементоорганических соединений РАН им. А.Н. Несмеянова, 119991 Москва, Россия

[@]E-mail: lebed@ineos.ac.ru

^aTaras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine

^bChuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 03164 Kyiv, Ukraine

^cVernadskii Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine

^dNesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119991 Moscow, Russia

[@]Corresponding author E-mail: lebed@ineos.ac.ru

Main pathway of the ionization of the complexes $[M(HPzOx)_3(BC_6H_3)]Cl$ is heterolytic dissociation of these ionic associates giving chloride ions and boron-capped tris-pyrazoloximate cations $[M-Cl^-]^+$. The latters are thermodynamically unstable due to the destraction of a pseudomacrobicyclic framework and undergo the further fragmentation leading to the corresponding species and the cluster ions. Such a dissociative type of the fragmentation suggests a substantial stability of the coordination M-N bonds. The spectra of the oximehydrazonate macrobicyclic complexes with similar structure contain the peaks of the corresponding clathrochelate cations; and to their trisdioximate analogs, giving the characteristic ion-molecular associates with alkali metal cations. The LDI mass spectra of the boron-capped tris-pyrazoloximate pseudoclathrochelate do not contain the peaks of the molecular ions and their associates with alkali metal ions, whereas the detachment of cross-linking chloride counterion is the main pathway of their fragmentation. The non-macrocyclic tris-pyrazoloximate formed particles are unstable and either undergo the fragmentation with an elimination of one of the three ribbed chelate fragments, or, as tripodal semiclathrochelate tris-pyrazol ligands, form the unusual binuclear complexes by their coordination to the corresponding metal ion.

Keywords: Macrocyclic compounds, clathrochelates, encapsulation, transition metal complexes, mass spectra, ionization, fragmentation, association.

Введение

Клеточные комплексы переходных металлов (клатрохелаты^[1]) и их псевдомакробициклические аналоги^[2] обладают рядом уникальных структурных, физических характеристик и химических свойств, которые, в частности, были использованы для создания т.н. «топологических лекарств»^[3-6] и перспективных парамагнитных проб для использования в структурной биологии. [7,8] В связи с этим представляет несомненный интерес изучение устойчивости и путей фрагментации этих клеточных комплексов как в растворах, так и в газовой фазе. Ранее[9] методом ББА масс-спектрометрии были изучены пути фрагментации гидроксиборсодержащих клатрохелатов железа(II) - производных алициклических диоксимов (Схема 1). Наиболее интенсивные пики в их спектрах соответствуют протонированным молекулярным ионам [М+Н+]+, а основной путь фрагментации этих комплексов в газовой фазе – отщепление α-диоксиматных фрагментов, тогда как интенсивность пиков фрагментов с отщеплением сшивающей группы намного ниже. Было установлено, что отщепление апикальных гидроксильных групп и борсодержащих сшивающих фрагментов характерно для комплексов семи- и восьмичленных алициклических ос-диоксимов, а введение заместителя в циклогексановое кольцо и расширение кольца до семичленного приводит к заметной дестабилизации клатрохелатного остова; дальнейший переход к клатрохелатному производному менее напряженного восьмичленного α-диоксима стабилизирует макробициклическую структуру. [9] Позднее [10] методом ESI масс-спектрометрии были изучены пути ионизации ди- и гексахлоромоноклатрохелатов железа(II), бис-клатрохелатов железа(II) и их оксимгидразонатных макробициклических аналогов, а также катион-рецепторные свойства этих комплексов по отношению к катионам щелочных металлов. Недавно[2] нами был получен и структурно охарактеризован ряд псевдомакробициклических трис-пиразолоксиматных комплексов ионов 3d-металлов и цинка(II) общей формулой $[M(HPzOx)_3(BC_6H_5)]Cl$. Особенностью их молекулярной структуры (Схема 2) является наличие лабильного триподного апикального фрагмента (NH)3...Cl,

который образован тремя водородными связями между псевдосшивающим хлорид-ионом и тремя пиразольными группами трех хелатирующих пиразолоксиматных фрагментов (Схема 2). Было установлено, что MALDI-ТОF масс-спектры псевдоклатрохелатов 3*d*-металлов с предпочтительной октаэдрической N_{ϵ} координацией (т.е. комплексы железа, кобальта и марганца(II)) содержат интенсивные пики катионных полуклатрохелатных частиц [М-С1-]+, а также их соответствующих псевдомакроциклических производных, образованных при отщеплении одного пиразолоксиматного реберного хелатирующего фрагмента. Пик катионных частиц, образующихся при отщеплении этого фрагмента, преобладают в спектре комплекса цинка(II) с предпочтительной тетраэдрической конфигурацией центрального иона металла. [2] Позднее было показано, что комплекс кобальта(II) этого типа проявляет свойства моноядерного молекулярного магнита с рекордными характеристиками, [11] а псевдоклатрохелат марганца(II) имеет необычные ЭПР характеристики. [12] В настоящей работе для установления закономерностей и особенностей процессов ионизации и фрагментации этих псевдомакробициклических комплексов в газовой фазе в условиях LDI масс-спектрометрических экспериментов был проведен ряд экспериментов при различных режимах регистрации сигналов.

Экспериментальная часть

Экспериментальные масс-спектры были получены на масс-спектрометре Autoflex II (Bruker Daltonics), оборудованным азотным лазером ($\lambda=337$ нм), методом безматричной лазерной десорбции/ионизации (LDI) в линейном и рефлектронном режимах регистрации положительных и отрицательных ионов. Калибровку прибора проводили по фуллерену C_{60} («Merck») с $[M]^+=720.0$ в качестве стандарта. Результирующий масс-спектр получали суммированием 100 единичных масс-спектров.

Исходные комплексы [М(HPzOx) $_3$ (BC $_6$ H $_5$)]СІ были получены по методикам. [2] Для проведения масс-спектрометрического эксперимента стоковые растворы комплексов в ацетонитриле с концентрацией 2 ммоль/л (3 µл) наносили на стандартную стальную подложку. Затем испаряли растворитель, и подложку помещали в рабочую зону прибора, проводя серию эксперимен-

Схема 1. Пути фрагментации гидроксиборсодержащих клатрохелатов железа(II).

тов при одинаковых условиях регистрации LDI масс-спектров.

Масс-спектры комплекса кобальта с высоким соотношением сигнал/шум регистрировали в условиях 70 % мощности излучения относительно полной мощности лазера, повышение энергии излучения существенно не влияло на интенсивность сигналов. Масс-спектры комплексов цинка, железа и марганца с наиболее высоким соотношением сигнал/шум были получены при 100 % мощности лазерного излучения, так как при более низких значениях энергии интенсивность сигналов значительно уменьшалась.

Результаты и обсуждение

Результаты детального изучения LDI масс-спектров этих соединений суммированы в Таблицах 1 и 2. Во всех полученных спектрах пик, соответствующий молекулярному иону либо отсутствует, либо имеет низкую интенсивность, при этом они содержат интенсивные пики, соответствующие продуктам фрагментации псевдомакробициклических остовов, а также кластерным ионам.

 $M^{2+} = Fe^{2+}, Co^{2+}, Zn^{2+}, Mn^{2+}$

Схема 2. Молекулярная структура псевдоклатрохелатов $[M(PzOx)_3(BC_6H_5)]Cl.$

Анионная область

Macc-спектры комплексов $[M(HPzOx)_3(BC_6H_5)]Cl$ в отрицательной области (Рисунок 1П Приложения) имеют сходный вид и содержат две группы сигналов. Наиболее интенсивные пики соответствуют биядерным макробициклическим анионам $\{[M(PzOx)_3(BC_6H_5)]^{2-1}(M^{2+}Cl^{-})^+\}^-,$ образованным путем отщепления трех ионов Н+ от апикальной псевдосшивающей группы Н ... С1- с последующей координацией образующегося триподного трианнионного трис-пиразолоксиматного лигандного фрагмента ко второму иону металла; интенсивность этих сигналов в области отрицательных ионов была принята за 100 %. Кроме того, в спектрах комплексов кобальта и железа(II) обнаружены пики, соответствующие кластерным ионам состава $\{[M(PzOx)_3(BC_6H_5)]^2 - (M^2 + H^+Cl_2^-)^+\}^-$, являющиеся результатом присоединения молекулы НС1 к этим биядерным анионным частицам (Схема 3). Состав этих

Таблица 1. Анионные частицы в LDI масс-спектрах псевдоклатрохелатных *трис*-пиразолоксиматных комплексов $[M(HPzOx)_3(BC_6H_5)]CI$.

Комплекс	Продукт	<i>m/z</i> , Да (от.интен.ед.)	I, %
[Co(HPzOx) ₃ (BC ₆ H ₅)]Cl	$\{[Co(PzOx)_3(BC_6H_5)]^{2-}\cdot (CoCl^-)^+\}^-$	610.1(3135)	100
	$\{[Co(PzOx)_{3}(BC_{6}H_{5})]^{2-} \cdot (CoH^{+}Cl_{2}^{-})^{+}\}^{-}$	646.3(554)	18
	$[Co(HPzOx)(PzO)_2(BC_6H_5)]^-$	517.4(114)	4
$[Fe(HPzOx)_3(BC_6H_5)]Cl$	$\{[Fe(PzOx)_3(BC_6H_5)]^{2-} \cdot (FeCl^-)^+\}^-$	604.3(2786)	100
	$\{[Fe(PzOx)_3(BC_6H_5)]^{2-} \cdot (FeH^+Cl_2^{-})^+\}^-$	640.3(751)	27
	$[Fe(HPzOx)(PzO)_2(BC_6H_5)]^-$	514.4(187)	7
$[Mn(HPzOx)_3(BC_6H_5)]Cl$	$\{[Mn(PzOx)_3(BC_6H_5)]^{2-} \cdot (MnCl^-)^+\}^-$	602.2(326)	100
	$[Mn(HPzOx)(PzO)_2(BC_6H_5)]^{-}$	513.4(158)	48
$[Zn(HPzOx)_3(BC_6H_5)]Cl$	$\{[Zn(PzOx)_3(BC_6H_5)]^{2-} \cdot (ZnCl^-)^+\}^-$	624.2(829)	100
	$[ZnHPzOx)(PzO)_2(BC_6H_5)]^-$	522.1(142)	10

Таблица 2. Некоторые катионные частицы в LDI масс-спектрах псевдоклатрохелатных *трис*-пиразолоксиматных комплексов $[M(PzOx)_3(BC_5H_5)]Cl$.

Комплекс	Продукт	<i>m/z,</i> Да (от.интен.ед.)	I, %
[Co(HPzOx) ₃ (BC ₆ H ₅)]Cl	$\{[Co(PzOx)_2(BC_6H_5)] \cdot H^+\}^+$	394.1(4012)	100
	$\{[Co_2(PzOx)_3(BC_6H_5)] \cdot H^+\}^+$	576(2854)	71
	$\{[Co(PzOx)_{3}(BC_{6}H_{5})] \cdot 3H^{+}\}^{+}$	519(445)	11
	$\{[Co_{2}(PzOx)_{4}(BC_{6}H_{5})_{2}]\cdot H^{+}\}^{+}$	787.7(595)	15
	$\{[Co_2(PzOx)_4(BC_6H_5)Cl]^- \cdot Co^{2+}\}^+$	880.4(2524)	63
[Fe(HPzOx) ₃ (BC ₆ H ₅)]Cl	$\{[Fe(PzOx)_2(BC_6H_5)] \cdot H^+\}^+$	391.1(4080)	59
	$\{[Fe_{2}(PzOx)_{3}(BC_{6}H_{5})]\cdot H^{+}\}^{+}$	570(3992)	58
	$\{[Fe(PzOx)_{3}(BC_{6}H_{5})] \cdot 3H^{+}]\}^{+}$	516.1(3347)	49
	$\{[Fe_2(PzOx)_4(BC_6H_5)_2] \cdot H^+\}^+$	781(1553)	23
	$\{[Fe_2(PzOx)_4(BC_6H_5)_2Cl_2] \cdot Na^+\}^+$	873(1238)	18
	$\{[Fe_2(PzOx)_4(BC_6H_5)_2Cl]^- \cdot Fe^{2+}\}^+$	871(816)	12
$[Mn(HPzOx)_3(BC_6H_5)]Cl$	$\{[Mn(PzOx)_2(BC_6H_5)] \cdot H^+\}^+$	390,3(387)	21
	$\{[Mn(PzOx)_3(BC_6H_5)] \cdot 3H^+\}^+$	515,3(280)	15
	$\{[Mn_2(PzOx)_3(BC_6H_5)] \cdot H^+\}^+$	568(1472)	79
$[Zn(HPzOx)_3(BC_6H_5)]Cl$	$\{[Zn(PzOx)_{2}(BC_{6}H_{5})] \cdot H^{+}\}^{+}$	399.1(972)	16
	$\{[Zn_2(PzOx)_3(BC_6H_5)] \cdot H^+\}^+$	586(1350)	23

Схема 3. Анионные продукты и пути фрагментации *трис*-пиразолоксиматных псевдоклатрохелатов $[M(PzOx)_3(BC_6H_5)]Cl$ в условиях LDI масс-спектрометрического эксперимента.

комплексных анионов был подтвержден соответствием их экспериментального и теоретически рассчитанного изотопного распределения. Пример для комплекса цинка(II), обладающего характерной мультиплетностью сигнала и позволяющего однозначно идентифицировать анионную частицу, приведен на Рисунке 1. Несмотря на то, что по данным РСА[2] все эти комплексы являются изоструктурными, наибольшая интенсивность пиков частиц $\{[M(PzOx)_3(BC_6H_5)]^{2-}\cdot(M^{2+}H^+Cl_5^-)^+\}^-$ наблюдается в LDI масс-спектрах псевдоклатрохелатов кобальта и железа(II). В спектре комплекса цинка(II) интенсивность этих пиков значительно меньше, а в случае борсодержащего *тис*-пиразолоксимата марганца(II) эти сигналы удалось обнаружить только после добавления триэтиламина в качестве органического основания для депротонирования триподного трис-пиразолатного лиганда.

Пики, соответствущие *трис*-пиразолоксиматным анионным частицам, которые образуются в результате отщепления молекулы HCl и депротонирования двух из трех пиразольных групп исходного псевдомакробициклического лиганда, значительно менее интенсивны (Таблица 1).

Для оценки относительной устойчивости образующихся комплексных анионов были проведены измерения в рефлектронном режиме регистрации ионов, показавшие, что в спектрах комплексов 3d-металлов интенсивность основных пиков практически не изменилась. В случае mpuc-пиразолоксимата цинка(II) в спектре не был обнаружен пик, соответствующий аниону [Zn(HPzOx) (PzOx)₂(BC₆H₅)]⁻, тогда как при записи в линейном режиме этот пик наблюдался, но с очень низкой интенсивностью.

Катионная область

Катионные области LDI масс-спектров комплексов $[M(PzOx)_3(BC_6H_5)]Cl$ (Рисунок 2П Приложения) содержат большое число пиков, отвечающих фрагментарным и кластерным катионам, состав которых зависит от природы инкапсулированного иона металла (Таблица 2). Сигналы полуклатрохелатных *трис*-пиразолоксиматных катионов состава $[M(HPzOx)_3(BC_6H_5)]^+$, образованных в результате гетеролитического отщепления хлорид-аниона от псевдоклатрохелатной частицы, наблюдаются

Рисунок 1. Экспериментальное (**a**) и теоретическое (**б**) изотопное распределение для биядерного аниона $\{[Zn(PzOx)_3(BC_6H_5)]^{2-}(Zn^{2+}Cl^{-})^+\}^-$.

в спектрах комплексов 3d-металлов и отсутствуют в спектре соединения цинка(II). Низкая интенсивность этих сигналов может говорить о неустойчивости образующихся немакроциклических полуклатрохелатных катионов: комплексы $[M(HPzOx)_2(BC_2H_5)]Cl$ претерпевают наряду с гетеролитической диссоциацией, также фрагментацию и ион-молекулярную ассоциацию с катионами металлов с образованием устойчивых продуктов. В спектрах наблюдаются пики, отвечающие катионам состава $[M(PzOx)_2(BC_6H_5)H]^+$, которые образуются в результате отщепления одного реберного пиразолоксиматного фрагмента и протона (этот пик является наиболее интенсивным в этой области спектра псевдоклатрохелата кобальта(II)), а также пики, соответствующие биядерным катионам состава $[M(PzOx)_3(BC_6H_5)H]^{-1}M^{2+}$, образованных в результате ассоциации катиона металла(II) к дважды депротонированному трис-пиразолоксиматному триподному лиганду. В спектрах комплексов кобальта и железа(II) также наблюдаются сигналы, отвечающие кластерным ионам состава $\{2[M(PzOx)_2(BC_2H_5)]\cdot [M^{2+}Cl^{-}]^+\}^+$, полученным в результате координации двух устойчивых фрагментарных лигандов $[M(PzOx)_2(BC_4H_5)]$ к соответствующему катиону металла (Схема 4).

Выводы

Таким образом, основным путем ионизации комплексов $[M(HPzOx)_3(BC_6H_5)]Cl$ в условиях LDI масс-спектрометрического эксперимента является гетеролитическая диссоциация этих ионных ассоциатов

с образованием хлорид-ионов и борсодержащих триспиразолоксиматных катионов [М-Сl-]+. Последние являются термодинамически неустойчивыми вследствие разрушения псевдомакробициклической структуры и претерпевает дальнейшую фрагментацию, приводящую к образованию соответствующих частиц и кластерных ионов. Диссоциативный тип ионизации, в результате которой образуются комплексные катионы, свидетельствует о достаточной прочности координационных связей M-N. В отличие от схожих по строению оксимгидразонатных макробициклических комплексов, в спектрах которых наблюдаются интенсивные пики, соответствующие клатрохелатным макробициклическим катионам, а также их трис-диоксиматных аналогов, для которых характерно образование ион-молекулярных ассоциатов с катионами щелочных металлов, для LDI масс-спектров изученных борсодержащих трис-пиразолоксиматных комплексов не характерно образование соответствующего молекулярного иона и его ассоциатов с катионами щелочных металлов, а наблюдается отщепление псевдосшивающего хлорид-иона. Образующиеся немакроциклические триспиразолоксиматные частицы неустойчивы и, либо претерпевают фрагментацию с отщеплением одного из трех реберных хелатирующих фрагментов, либо, как триподные трис-пиразольные лиганды, координируются к иону соответствующего металла, образуя необычные биядерные комплексы. Наличие интенсивных сигналов таких комплексов в спектрах всех изученных соединений как в положительной, так и в отрицательной областях свидетельствует о том, что такие полуклатрохелатные лиганды склонны к образованию соответствующих биядерных

Схема 4. Катионные продукты и пути фрагментации и ассоциации *трис*-пиразолоксиматов $[M(HPzOx)_3(BC_6H_5)]Cl$ в условиях LDI масс-спектрометрического эксперимента.

The Behavior of Pseudoclathrochelate Metal tris-Pyrazoloximates in the LDI Mass Spectra

клеточных комплексов. В спектре псевдоклатрохелата кобальта(II) все сигналы соответствуют борсодержащим металлокомплексным катионам, тогда как в спектрах псевдомакробициклических соединений железа, марганца и цинка(II) наблюдается фрагментации клеточных молекул с разрушением борсодержащего сшивающего фрагмента. Образование в газовой фазе устойчивых полиядерных комплексов депротонированных триподных борсодержащих *трис*-пиразолоксиматных лигандов открывает перспективы для синтеза соответствующих макрополициклических и полиядерных систем на их основе как металлсодержащих лигандных синтонов.

Благодарность. Работа выполнена при финансовой поддержке Российского Научного Фонда (грант №14-13-00724) и совместного проекта № 295160 Седьмой Рамочной Программы Европейского Сообщества (FP 7/2007-2013 IRSES). Е.Г. Лебедь также благодарит за поддержку Российский фонд фундаментальных исследований (проект № 15-03-07414).

Список литературы

References

 Voloshin Y.Z., Kostromina N.A., Krämer R. Clathrochelates: Synthesis, Structure and Properties. Amsterdam: Elsevier, 2002. 432 p.

- Varzatskii O.A., Penkova L.V., Kats S.V., Dolganov A.V., Vologzhanina A.V., Pavlov A.A., Novikov V.V., Bogomyakov A.S., Nemykin V.N., Voloshin Y.Z. *Inorg. Chem.* 2014, 53, 3062–3071.
- Novikov V.V., Varzatskii O.A., Negrutska V.V., Bubnov Y.N., Palchykovska L.G., Dubey I.Y., Voloshin Y.Z. J. Inorg. Biochem. 2013, 124, 42–45.
- 4. Varzatskii O.A., Novikov V.V., Shulga S.V., Belov A.S., Vologzhanina A.V., Negrutska V.V., Dubey I.Y., Bubnov Y.N., Voloshin Y.Z. *Chem. Commun.* **2014**, *50*, 3166–3168.
- Varzatskii O.A., Shul'ga S.V., Belov A.S., Novikov V.V., Dolganov A.V., Vologzhanina A.V., Voloshin Y.Z. Dalton Trans. 2014, 43, 17934–17948 (a cover article).
- Voloshin Y.Z., Novikov V.V., Nelyubina Y.V. RSC Adv. 2015, 5, 72621–72637.
- Novikov V.V., Ananyev I.V., Pavlov A.A., Fedin M.V., Lyssenko K.A., Voloshin Y.Z. J. Phys. Chem. Lett. 2014, 5, 496–500.
- Novikov V.V., Pavlov A.A., Belov A.S., Vologzhanina A.V., Savitsky A., Voloshin Y.Z. J. Phys. Chem. Lett. 2014, 5, 3799– 3803.
- Voloshin Y.Z., Mosin V., Korol E.N. *Inorg. Chim. Acta* 1991, 180, 189–193.
- Kats S.V., Varzatskii O.A., Penkova L.V., Vologzhanina A.V., Novikov V.V., Lebed E.G., Voloshin Y.Z. *Macroheterocycles* 2014, 7, 34–39.
- Novikov V.V., Pavlov A.A., Nelyubina Y.V., Boulon M.-E., Varzatskii O.A., Voloshin Y.Z., Winpenny R.E.P. J. Am. Chem. Soc. 2015, 137, 9792–9795.
- 12. Azarkh M., Penkova L., Kats S., Varzatskii O., Voloshin Y., Groenen E. J. Phys. Chem. Lett. 2014, 5, 886–889.

Received 29.09.2015 Accepted 30.10.2015