DOI: 10.6060/mhc150561k

Синтез и свойства первых представителей гидроксизамещенных азакраунофанов и криптанда, включающих фрагменты 2,7-дигидроксифлуоренона

А. В. Лобач, И. С. Яковенко, Т. И. Кириченко@

Физико-химический институт имени А.В. Богатского Национальной академии наук Украины, 65080 Одесса, Украина @E-mail: ti-kirichenko@rambler.ru

Конденсацией диглицидных эфиров 2,7-дигидрокси-, 2,7-бис(2-гидроксиэтокси)- и 2,7-бис[2-(2-гидроксиэтокси) этокси]флуоренонов с бензиламином в смеси этанола с ТГФ (1:1) или в этаноле в условиях высокого разбавления с выходом 15–35 % получены первые представители дигидроксифлуореноноазакраунофанов и тетрагидроксибис(флуореноно)диазакраунофанов, являющихся продуктами циклизации по схеме [1+1] и [2+2]. Аналогичная конденсация 2,7-бис[2-(2-гидроксиэтокси)этокси]флуоренона с диаза-18-краун-6 в этаноле приводит к дигидроксифлуоренонокриптанду с выходом 28 %. Полученные соединения выделены в виде смесей D,L- и мезо-диастереомеров состава 1:1 и 1:2:1.

Ключевые слова: Диглицидный эфир, гидроксифлуореноноазакраунофан, гидроксифлуоренонокриптанд.

The Synthesis and Properties of the First Representatives of Hydroxy Substituted Azacrownophanes and Cryptand with 2,7–Dihydroxyfluorenone Fragments

Alexander V. Lobach, Irene S. Yakovenko, and Tatyana I. Kirichenko@

A.V. Bogatskiy Physico-Chemical Institute, National Academy of Sciences of Ukraine, 65080 Odessa, Ukraine @Corresponding author E-mail: ti-kirichenko@rambler.ru

The condensation of diglycidyl ethers of 2,7-dihydroxy-, 2,7-bis(2-hydroxyethoxy)- and 2,7-bis[2-(2-hydroxyethoxy) ethoxy]fluorenones with benzylamine in EtOH or EtOH:THF (1:1) under high dilution conditions has led to the first representatives of dihydroxyfluorenono-azacrownophanes and tetrahydroxybis(fluorenone)diazacrownophanes. These compounds are the products of [1+1] or [2+2] cyclization in 15–35 % yields. Similar condensation of 2,7-bis[2-(2-hydroxyethoxy)ethoxy)ethoxy]fluorenone with diaza-18-crown-6 in ethanol dihydroxyfluorenonocryptand led to 28 % yield. The resulting compounds were isolated as mixtures of D,L- and meso-diastereoisomers in 1:1 and 1:2:1 ratios.

Keywords: Diglycidyl ether, hydroxyfluorenonoazacrownophane, hydroxyfluorenonocryptand.

Введение

В последние годы возрастает интерес к конструированию, синтезу и применению различных макроциклических рецепторов, способных селективно распознавать ионы металлов, анионы и нейтральные молекулы. К настоящему времени получено большое количество макроциклов, отличающихся размером и формой внутримолекулярной полости, а также составом и структурой образующих ее компонентов. Это открывает широкие возможности их практического применения от катализа к транспорту, от сенсоров или устройств к молекулярным машинам или фармакологии.^[1-6]

В предыдущем сообщении мы описали методы синтеза и свойства первых флуореноноазакраунофанов и флуоренонокриптанда, представляющих интерес в качестве довольно простых и высокоорганизованных рецепторов, способных осуществлять селективное распознавание ионов, молекул и молекулярных фрагментов.^[7] Присутствие больших ароматических блоков и полярных групп увеличивает устойчивость их комплексов с электронодефицитными органическими субстратами.^[8-13] Введение гидроксильных групп в молекулу краунофана или криптанда открывает широкие возможности для дальнейших структурных модификаций этих соединений, иммобилизации их на нерастворимые носители и создания полимерных материалов.

Удобным способом получения аминоспиртов считается взаимодействие эпоксидных соединений с аминами в присутствии ионных или донорно-акцепторных катализаторов. В зависимости от природы катализатора можно добиться преимущественного аминирования α- или β-углеродного атома оксиранового цикла.^[14]

Ранее был предложен новый подход к синтезу гидроксилсодержащих криптандов из алкоксиэпоксидов и диазакраун-эфиров в отсутствии темплатных агентов при электрофильном содействии спиртов. Этот подход получил название принципа внутрикомплексной макроциклизации, который основан на предположении, что циклизации может способствовать образование квазициклического ассоциата исходных соединений с последующей внутрикомплексной реакцией между ними. При этом образовывались исключительно продукты присоединения по α-углеродному атому эпоксида, что характерно для α-окисей, содержащих электроноакцепторные заместители.^[15]

В настоящем сообщении мы обсуждаем синтез и свойства первых представителей гидроксилсодержащих азакраунофанов и криптанда, полученных взаимодействием диглицидных эфиров, включающих фрагменты 2,7-дигидрокси-9*H*-флуорен-9-она, с бензиламином и диаза-18-краун-6.

Экспериментальная часть

Температуры плавления измерены в открытых капиллярах и не исправлены. Элементный анализ проводили на CHNS анализаторе EuroVector EA3000. ББА-масс-спектры регистрировали на масс-спектрометре VG 7070EQ (Xe, 8 kB) в матрице 3-нитробензилового спирта. ЭСП записывали на спектрофотометре Specord M-40. Спектры ¹Н ЯМР растворов веществ в CDCl₃ и DMSO-d₆ регистрировали на приборе Varian VXR-300 с рабочей частотой 300 МГц, внутренний стандарт – TMC. Чистоту всех синтезированных веществ контролировали методами ВЭЖХ на хроматографе Shimadzu LC-8A при комнатной температуре, детектор фотодиодный SPD-M-20A, колонка размером 4.6 × 250 мм, сорбент Dionex Acclaim Polar Advantage II, C 18 (5 мкм), элюент – CH₃CN (90 %), 1 мл/мин и TCX на пластинках TLC Silica gel 60 F_{254} , Мегсk, элюент – хлороформ:метанол, 100(10):1. Для препаративной колоночной хроматографии использовали стеклянные колонки с сорбентом Silica gel 60 (0.063–0.100 мм), Merck, элюент – хлороформ:метанол 100(10):1.

2,7-Дигидрокси-9*H*-флуорен-9-он **1а**,^[16] 2,7-бис(2-гидроксиэтокси)-9*H*-флуорен-9-он **16**^[17] и 2,7-бис[2-(2-гидроксиэтокси)этокси]-9*H*-флуорен-9-он **16**^[18] получали, как описано ранее. Эпихлоргидрин и диаза-18-краун-6 коммерчески доступны.

Синтез

Общая методика получения диглицидных эфиров 2а-в.

Смесь (0.01 моль) соответствующего диола **1а–**в, 0.34 г (1 ммоль) тетрабутиламмония гидросульфата и 41.63 г (0.45 моль) эпихлоргидрина перемешивали 0.5 ч при 45–50 °C, прибавляли по каплям 3.20 г (0.04 моль) 50 % раствора NaOH и продолжали перемешивание при той же температуре 20 ч. К охлажденной смеси прибавляли 100 мл хлороформа, перемешивали при комнатной температуре 0.5 ч, отфильтровывали. Осадок промывали хлороформом (3×10 мл), фильтрат промывали в вакууме. Остаток очищали хроматографией на колонке, элюент – хлороформ:метанол, 100:1.

2, 7-Бис(оксиран-2-илметокси)-9*H*-флуорен-9-он (2а). Оранжевые кристаллы, выход 2.07 г (64 %), т.п.л. 155 °С (из бензола). Найдено, %: С, 70.21; Н, 5.14. С₁₉H₁₆O₅. Вычислено, %: С, 70.36; Н, 4.97. Масс-спектр (ББА) *m/z*: 324 [M⁺]. ЭСП (CH₃CN) λ_{max} (IgE) нм: 263 (4.72), 270 (4.88), 300 (3.81), 312 (3.77), 454 (2.49). ¹H ЯМР (CDCl₃) $\delta_{\rm H}$ м.д.: 2.74–2.80 (м, 2H, (CH₂CHO)), 2.93 (т, 2H, *J* = 4.5 Гц, (CH₂CHO)), 3.33–3.41 (м, 2H, (CH₂CHO)), 3.90–3.99 (м, 2H, CH₂OAr), 4.29 (д.д, 2H, *J*=2.6, 11 Гц, CH₂OAr), 6.98 (д.д. 2H, *J* = 2.2, 8.1 Гц, H_b), 7.15 (д. 2H, *J*= 2.2 Гц, H_a), 7.29 (д. 2H, *J* = 8.1 Гц, H_a).

2,7-Бис[2-(оксиран-2-илметокси)этокси]-9Н-флуорен-9-он (26). Оранжевые кристаллы, выход 1.78 г (43 %), т.пл. 95 °С (из гексана). Найдено, %: С, 62.18; Н, 5.94. С₂₃Н₂₄О₇. Вычислено, %: С, 62.14; Н, 6.02. Масс-спектр (ББА) *m*/*z*: 412 [M⁺]. ЭСП (СН₃СN) λ_{max} (lgɛ) нм: 270 (4.92), 300 (3.88), 313 (3.91), 458 (2.48). ¹Н ЯМР (СDСl₃) $\delta_{\rm H}$ м.д.: 2.60–2.70 (м, 2H, (СH₂CHO)), 2.83 (т, 2H, *J* = 4.5 Гц, (СH₂CHO)), 3.13–3.27 (м, 2H, (CH₂CHO)), 3.44–3.57 (м, 2H, CHCH₂O), 3.90–3.99 (м, 6H, CH₂CH₂OAr, CHCH₂O), 4.17 (т, 4H, *J* = 4.5 Гц, CH₂OAr), 6.97 (д.д, 2H, *J* = 2.2, 8.1 Гц, H_b), 7.16 (д, 2H, *J* = 2.2 Гц, H_a), 7.29 (д, 2H, *J* = 8.1 Гц, H_c).

2, 7-Бис {2-[2-(оксиран-2-илметокси)этокси]этокси}-9H-флуорен-9-он (**2**в). Красно-оранжевые кристаллы, выход 2.50 г (50 %), т.пл. 46 °С (из гексана). Найдено, %: С, 64.82; Н, 6.43. С₂₇Н₃₂О₉. Вычислено, %: С, 64.79; Н, 6.44. Масс-спектр (ББА) *m/z*: 500 [М⁺]. ЭСП (СН₃CN) λ_{max} (lgɛ) нм: 263 (4.78), 270 (4.95), 300 (3.91), 313 (3.87), 470 (2.51). ¹Н ЯМР (CDCl₃) $\delta_{\rm H}$ м.д.: 2.58–2.65 (м, 2H, (С H_2 CHO)), 2.80 (т, 2H, J = 4.5 Гц, (С H_2 CHO)), 3.14–3.22 (м, 2H, (С H_2 CHO)), 3.39–3.48 (м, 2H, CHC H_2 O), 3.90–3.99 (м, 14H, CH₂CH₂O, CHC H_2 O), 4.17 (т, 4H, J = 4.6 Гц, CH₂OAr), 6.97 (д.д, 2H, J = 2.2, 8.1 Гц, H_b), 7.16 (д, 2H, J = 2.2 Гц, H₄), 7.28 (д, 2H, J=8.1 Гц, H_c).

Общая методика получения гидроксизамещенных флуореноноазакраунофанов **3,4,5а,6**. Смесь (2 ммоль) диглицидных эфиров **2а–в** и 214 мг (2 ммоль) бензиламина растворяли в смеси безводных этанола с ТГФ (1:1, 80 мл) в случае **2а** или в 100мл безводного этанола в случае **26,в**, нагревали до температуры кипения и выдерживали 24 ч. Охлажденную реакционную смесь отфильтровывали, осадок промывали горячим этанолом (2×10 мл), фильтрат упаривали в вакууме. Остаток очищали хроматографией на колонке, элюент – хлороформ:метанол, 10:1.

12,32-Дибензил-10,14,30,34-тетрагидрокси-8,16,28,36тетраокса-12,32-диазагептацикло[35.3.1.1^{3,7}.1^{17,21}.1^{23,27}.0^{4,40}.0^{20,24}] тетратетраконта-1(41),3(44),4,6,17(43),18,20,23(42),24,26, 37,39-додекаен-2,22-дион (3). Оранжевые кристаллы, выход 284 мг (33 %), т.пл. 213–215 °С (из бензола). Найдено, %: С, 72.59; Н, 5.68; N, 3.40. С₅₂Н₅₀N₂O₁₀. Вычислено, %: С, 72.37; Н, 5.84; N, 3.25. Масс-спектр (ББА) *т/z*: 863 [(M+H)⁺]. ЭСП (CH₃CN) $\lambda_{\text{тах}}$ (lgɛ) нм: 251 (4.84), 253 (4.76), 301 (3.78), 312 (3.73), 454 (2.59). ¹Н ЯМР (DMSO-d₆) δ_{H} м.д.: 2.30–2.78 (м, 8H, NCH₂), 3.22–4.14 (м, 20H, OCH₂, OCH, NCH₂Ph, OH), 6.53–6.77 (м, 8H, Ar), 7.00–7.19 (м, 4H, Ar), 7.21–7.51 (м, 10H, Ph).

18-Бензил-16,20-дигидрокси-8,11,14,22,25,28-гексаокса-18-азатетрацикло[27.3.1.1^{3,7}.0^{4,32}]тетратриаконта-1(33), 3(34),4,6,29,31-гексаен-2-он (4). Оранжевое масло, выход 304 мг (25 %). Найдено, %: С, 67.34; Н, 6.97; N, 2.44. С₃₄H₄₁NO₉. Вычислено, %: С, 67.20; Н, 6.80; N, 2.30. Масс-спектр (ББА) *т/z*: 608 [(M+H)⁺]. ЭСП (CH₃CN) λ_{max} (lgɛ) нм: 271 (4.76), 309 (3.74), 313 (3.70), 472 (2.36). ¹Н ЯМР (CDCl₃) $\delta_{\rm H}$ м.д.: 2.41–2.87 (м, 4H, NCH₂), 3.04–4.34 (м, 26H, OCH₂, OCH, NCH₂Ph, OH), 6.89–7.48 (м, 11H, Ar, Ph).

15,41-Дибензил-13,17,39,43-тетрагидрокси-8,11,19,22,34, 37,45,48-октаокса-15,41-диазагептацикло[47.3.1.1^{3,7},1^{23,27}, 1^{29,33}.0^{4,52}.0^{26,30}]гексапентаконта-1(53),3(56),4,6,23(55),24, 26,29(54),30,32,49,51-додекаен-2,28-дион (5а). Красно-оранжевые кристаллы, выход 363 мг (35 %), т.п.т. 161–163 °С (из бензола). Найдено, %: С, 69.38; Н, 6.69; N, 2.82. С₆₀Н₆₆N₂O₁₄. Вычислено, %: С, 69.35; Н, 6.40; N, 2.69. Масс-спектр (ББА) *т/z*: 1039 [(M+H)⁺]. ЭСП (CH₃CN) λ_{max} (lgɛ) нм: 263 (4.90), 270 (4.93), 311 (3.91), 331 (3.96), 472 (2.64). ¹H ЯМР (CDCl₃) δ_{H} м.д.: 2.56–2.85 (м, 8H, NCH₂), 3.37–4.23 (м, 36H, OCH₂, OCH, NCH₂Ph, OH), 6.78–7.39 (м, 22H, Ar, Ph).

18, 50-Дибензил-16, 20, 48, 52-тетрагидрокси-8,11,14,22,25,28,40,43,46,54,57,60-додекаокса-18,50-диазагеп тацикло[59.3.1.1^{3,7},1^{29,33},1^{35,39},0^{4,64},0^{32,36}]октагексаконта-1(65), 3(68),4,6,29(67),30,32,35(66),36,38,61,63-додекаен-2,34-дион (56). Красно-оранжевые кристаллы, выход 182 мг (15 %), т.пл. 83–85 °С (из бензола). Найдено, %: С, 67.13; Н, 6.63; N, 2.29. С₆₈Н₈₂N₂O₁₈. Вычислено, %: С, 67.20; Н, 6.80; N, 2.31. Масс-спектр (ББА) *т/z*: 1215 [(M+H)⁺]. ЭСП (СН₃CN) λ_{max} (lgɛ) нм: 263 (4.95), 271 (5.05), 302 (4.04), 313 (4.00), 471 (2.67). ¹Н ЯМР (CDCl₃) $\delta_{\rm H}$ м.д.: 2.40–2.86 (м, 8H, NCH₂), 3.09–4.37 (м, 52H, OCH₂, OCH, NCH₂Ph, OH), 6.88–7.46 (м, 22H, Ar, Ph).

3,31-Дигидрокси-5,8,11,23,26,29,36,39,44,47-декаокса-1,33-диазапентацикло[31.8.8.1^{12,16},1^{18,22}.0^{15,19}]генпентаконта12(51),13,15,18(50),19,21-гексаен-17-он (6). Получали аналогично гидроксифлуореноноазакраунофанам 4,5а,б из 75 мг (0.15 ммоль) диглицидного эфира **2в** и 39 мг (0.15 ммоль) диглицидного эфира **2в** и 39 мг (0.15 ммоль) диаза-18-краун-6 в 10 мл безводного этанола. Оранжевое масло, выход 32 мг (28 %). Найдено, %: С, 61.62; Н, 7.52; N, 3.96. С₃₉H₅₈N₂O₁₃. Вычислено, %: С, 61.40; Н, 7.66; N, 3.67. Массспектр (ББА) *m/z* (%): 801 (14) [(M+K)⁺], 785 (27) [(M+Na)⁺], 763 (100) [(M+H)⁺]. ЭСП (CH₃CN) λ_{max} (lgɛ) нм: 272 (3.61), 309 (2.64), 340 (1.88), 457 (1.54). ¹Н ЯМР (CDCl₃) $\delta_{\rm H}$ м.д.: 2.35–2.81 (м, 12H, NCH₂), 3.35–4.27 (м, 40H, OCH₂, OCH, OH), 7.01 (д.д, 2H, *J*=2.5, 8.1 Гц, H_b), 7.24 (д. 2H, *J*=2.5 Гц, H_a), 7.30 (д. 2H, *J*=8.4 Гц, H_c).

Результаты и обсуждение

Наиболее удобным способом получения диглицидных эфиров, включающих фрагмент флуоренона, на наш взгляд, является алкилировние диолов 1а-в эпихлоргидрином в двухфазной системе эпихлоргидрин – 50 % NaOH в присутствии тетрабутиламмония гидросульфата в качестве катализатора межфазного переноса (Схема 1). После обработки реакционной смеси выделяли диглицидные эфиры 2а-в с выходами 43-64 % хроматографией на колонке с силикагелем, водная суспензия которого имеет нейтральную среду (рН 7). В случае кислой или щелочной среды сорбента происходит взаимодействие глицидных эфиров со следами влаги или со спиртами элюента с раскрытием оксиранового цикла, что существенно снижает выходы целевых продуктов. Такое взаимодействие особенно заметно при использовании оксида алюминия в качестве сорбента.

Конденсация диглицидных эфиров **2а–в** с бензиламином в смеси этанола с ТГФ (1:1) или в этаноле после обработки реакционной смеси и хроматографической очистки на силикагеле приводит к тетрагидроксибис(флуореноно)диазакраунофанам **3**, **5а,6** и дигидроксифлуореноноазакраунофану **4**, которые являются продуктами циклизации по схеме [2+2] и [1+1] (Схема 2). Смесь этанола с ТГФ использовали в связи с незначительной растворимостью диглицидного эфира **2а** в спирте.

Из реакционной смеси не удалось выделить продукты циклизации по схеме [1+1] при использовании диглицидных эфиров **2а,б**. Вероятно, это объясняется стерическими затруднениями при образовании циклической структуры. Это предположение подтверждается анализом молекулярных моделей СРК (Corey-Pauling-Koltun) и результатами компьютерного моделирования.

Схема 1. Синтез диглицидных эфиров, включающих фрагмент 2,7-дигидрокси-9*H*-флуорен-9-она 2а-в.

Схема 2. Синтез гидроксилсодержащих флуореноноазакраунофанов 3, 4, 5а, б и флуоренонокриптанда 6.

Дигидроксифлуоренонокриптанд **6** получен с выходом 28 % конденсацией диаза-18-краун-6 с диглицидным эфиром **1в** в этаноле в условиях высокого разбавления с последующим выделением и очисткой продукта хроматографированием на силикагеле (Схема 2).

С помощью метода ВЭЖХ было показано, что азакраунофан 4 и криптанд 6 образуются в виде смесей D, L- и мезо- диастереомеров состава 1:1 (2 центра асимметрии), а диазакраунофаны 3, **5а**,**б** – в виде тех же смесей состава 1:2:1 (четыре центра асимметрии).

В ББА-масс-спектрах всех изученных соединений присутствуют пики соответствующих молекулярных ионов. В электронных спектрах поглощения наблюдаются характерные для 2,7-дизамещенных флуоренонов полосы поглощения в видимой и ультрафиолетовой областях.

Спектры ¹Н ЯМР диглицидных эфиров **2а–в** характеризуются неэквивалентностью протонов оксиранового цикла и протонов CH₂OAr. Для гидроксилсодержащих флуореноноазакраунофанов **3**, **4**, **5а**,**б** и флуоренонокриптанда **6** наблюдается типичный для азакраун-эфиров набор сигналов NCH₂-групп в области 2.30–2.87 м.д. и ОСН₂-групп в области 3.04–4.37 м.д. Флуореноновые протоны представлены характерным набором сигналов в виде дублета дублетов и двух дублетов в области 6.97–7.30 м.д. в спектрах диглицидных эфиров **2а–в** и криптанда **6.** В спектрах N-Bn-замещенных флуореноноазакраунофанов **3**, **4**, **5а,6** сигналы ароматических протонов наблюдаются в виде мультиплета в области 6.53–7.51 м.д. Присутствуют также сигналы всех других имеющихся групп протонов, что подтверждает строение полученных соединений.

Выводы

В заключение отметим, что нами получены и охарактеризованы первые представители гидроксилсодержащих азакраунофанов и криптанд, включающие фрагменты 2,7-дигидрокси-9*H*-флуорен-9-она. С позиций химии «гость-хозяин» наличие фрагмента флуоренона и гидроксильних групп в молекуле хозяина обладает рядом полезных свойств: большая поляризованная Hydroxy Substituted Azacrownophanes and Cryptand with Dihydroxyfluorenone Fragments

ароматическая система должна эффективно участвовать в π -катионных и π - π стекинг взаимодействиях с молекулой гостя, а также в образовании водородных связей. Комплексообразующие и иммобилизационные свойства этих соединений являются предметом дальнейших исследований.

Список литературы

References

- 1. Llinares J.M., Powell D., Bowman-James K. Coord. Chem. Rev. 2003, 240, 57–75.
- 2. Ilioudis C.A., Steed J.W. J. Supramol. Chem. 2001, 1, 165–187.
- 3. Schmidtchen F.P., Berger M. Chem. Rev. 1997, 97, 1609–1646.
- 4. Izatt R.M., Pawlak K., Bradshaw J.S. Chem. Rev. 1995, 95, 2529–2586.
- 5. Bradshaw J.S., Izatt R.M. Acc. Chem. Res. 1997, 30, 338–345.
- 6. Lehn J.M. Science 1985, 227, 849-856.
- 7. Lobach A.V., Yakovenko I.S., Lukyanenko N.G. *Macroheterocycles* **2009**, *2*, 286–289.

- Kirichenko T.I., Lobach A.V., Lyapunov A.Yu., Kulygina C.Yu., Yakovenko I.S., Lukyanenko N.G. *Macroheterocycles* 2009, 2, 290–295.
- Lyapunov A.Yu., Kirichenko T.I., Kulygina C.Yu., Lukyanenko N.G. *Russ. J. Org. Chem.* 2015, *85*, 1629–1634.
- Lukyanenko N.G., Kirichenko T.I., Lyapunov A.Yu., Kulygina C.Yu. Russ. Chem. Bull., Int. Ed. 2008, 1697–1702.
- Lukyanenko N.G., Kirichenko T.I., Lyapunov A.Yu., Kulygina C.Yu., Mazepa A.V. *Russ. J. Org. Chem.* 2009, 45, 304–311.
- 12. Lukyanenko N.G., Lyapunov A.Yu., Kirichenko T.I. Russ. Chem. Bull., Int. Ed. 2007, 56, 986–992.
- Lyapunov A., Kirichenko T., Kulygina C., Zubatyuk R., Fonari M., Doroshenko A., Kirichenko A. J. Incl. Phenom. Macrocyclic Chem. 2015, 81, 499–508.
- 14. Thomas C., Brut S., Bibal B. Tetrahedron 2014, 70, 1646–1650.
- 15. Lukyanenko N.G., Reder A.S. Russ. J. Org. Chem. 1989, 25, 385–394.
- Haenel M.W., Irngartinger H., Kreiger C. Chem. Ber. 1985, 118, 144–162.
- Kirichenko T.I., Meshkova S.B., Topilova Z.M., Kiriyak A.V., Lyapunov A.Yu., Kulygina C.Yu., Lukyanenko N.G. *Russ. J. Gen. Chem.* 2005, 75, 299–304.
- Lyapunov A.Yu., Kirichenko T.I., Kulygina C.Yu., Lukyanenko N.G. Russ. J. Org. Chem. 2005, 41, 144–149.

Received 18.05.2015 Accepted 30.10.2015