DOI: 10.6060/mhc141242p

Crown Ethers Assisted Cesium Extraction from Aqueous Solutions into a Hydrophobic Room Temperature Ionic Liquid 1-Butyl-3-methylimidazolium Bis[(trifluoromethyl)sulfonyl]imide

Andrey G. Vendilo, Vyacheslav I. Chistov, Julia M. Dikareva, and Konstantin I. Popov[@]

RJSC R&D Fine Chemicals Centre, 107564 Moscow, Russia @Corresponding author E-mail: ki-popov49@yandex.ru

Crown ethers (L) assisted extraction of Cs^l from aqueous neutral solutions (pH 5-6) into a hydrophobic ionic liquid 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide was studied at 22 °C operating with: 12-crown-4 (12C4), 15-crown-5 (15C5), 18-crown-6 (18C6), dibenzo-18-crown-6 (DB18C6), dibenzo-21-crown-7 (DB21C7) and dibenzo-24-crown-8 (DB24C8). The distribution coefficients ($logD_{Cs}^{\ L}$) are found to increase from 0.30 do 1.7 as the size of L is changing from 15C5 to DB21C7. A further increase of L size (DB24C8) leads to a sufficient decrease of $logD_{Cs}^{\ L}$ up to 0.9. The maximal $logD_{Cs}^{\ L}$ value corresponds to the better cation–crown ether fitting. Well expressed correlation between $logD_{Cs}^{\ L}$ values and stability constants of CsL in ionic liquid ($logK_{CsL}$) is obtained and is interpreted for the crown ether series.

Keywords: Cesium, extraction, crown ethers, room temperature ionic liquids.

Экстракция ионов цезия в присутствии краун–эфиров из нейтральных водных растворов в гидрофобную ионную жидкость бис[(трифторметил)сульфонил]имид 1-бутил-3-метилимидазолия

А. Г. Вендило, В. И. Чистов, Ю. М. Дикарева, К. И. Попов@

ПАО Научный центр «Малотоннажная химия», 107564 Москва, Россия @E-mail: ki-popov49@yandex.ru

Изучена экстракция Cs^I из нейтральных водных растворов (pH 5-6) в гидрофобную ионную жидкость бис[(трифторметил)сульфонил]имид 1-бутил-3-метилимидазолия ([BMIM][N(Tf)₂]) в присутствии серии краун-эфиров (L): 12-краун-4 (12С4), 15-краун-5 (15С5), 18-краун-6 (18С6), дибензо-18-краун-6 (DB18C6), дибензо-21-краун-7 (DB21C7) и дибензо-24-краун-8 (DB24C8) при 22 °C. Показано, что коэффициенты распределения (logD_{Cs}^L) монотонно возрастают при переходе от 15С5 к DB21C7 от 0.30 до 1.7, а затем снижаются до 0.9 (DB24C8). Максимальное значение logD_{Cs}^L наблюдается для краун-эфира с наилучиим соответствием размера полости ионному радиусу катиона. Для исследованных краун-эфиров выявлена и объяснена линейная корреляция между logD_{Cs}^L и константами устойчивости комплексных соединений CsL в ионной жидкости (logK_{Cs}).

Ключевые слова: Цезий, экстракция, краун-эфиры, ионная жидкость.

Crown Ethers Assisted Cesium Extraction into Ionic Liquid

Introduction

Hydrophobic crown ethers are widely used for a selective extraction of cations from aqueous solution into organic phase.^[1-5] Recently the hydrophobic room temperature liquids (RTILs) are intensively studied as an alternative to the volatile and flammable conventional organic solvents.^[6-11] An increasing interest is observed towards extraction of radionuclides,^[9,11] lanthanides,^[12] copper,^[13] lithium,^[14] and other metals. Intensive studies in this field were initiated since an outstanding dicyclohexyl-18-crown-6 assisted removal of strontium from aqueous solution into triflimide-based RTIL has been reported. The corresponding distribution coefficient $D_{\rm Sr}^{\rm L} = 1.1 \cdot 10^{4[6]}$ was incomparably higher than that for toluene (0.76) and chloroform (0.77).^[9]

Our previous studies of cesium extraction into six hydrophobic RTILs in presence of 18-crown-6 (18C6, L) and dibenzo18-crown-6 (DB18C6, L) run in the wide p*H* range, reveal a rather complicated correlation between the stability constant of CsL complexes in RTIL ($\log K_{CsL}$) and cesium distribution coefficient ($\log D_{Cs}^{-L}$).^[15,16] In present paper an extraction of Cs¹ from neutral aqueous solutions into 1-butyl-3-methylimidazolium bis[trifluoromethyl)sulphonyl]imide ([BMIM][N(Tf)₂]) (Figure 1) at 22 °C for a series of crown ethers with monotonously increasing cavity size, and known $\log K_{CsL}$ value is considered: 12-crown-4 (12C4,L), 15-crown-5 (15C5), 18C6, DB18C6, dibenzo-21-crown-7 (DB21C7, L) and dibenzo-24-crown-8 (DB24C8, L).

Experimental

1-Butyl-3-methylimidazolium bis[trifluoromethyl)sulphonyl] imide (Sigma-Aldrich) was used without additional treatment. Reagent grade crown ethers 12C4, 15C5, 18C6, DB18C6, DB21C7, and DB24C8 have been also supplied by Sigma-Aldrich, while CsNO₃ sample was purchased from Merck.

Cesium distribution coefficients D_{Cs}^{L} have been measured after 2 hours shaking of 10 ml of 0.001 M CsNO, neutral aqueous solution,

Figure 1. Chemical formula of [BMIM][N(Tf)₂].

and 1 ml of 0.1 M crown ether solution in RTIL at 22 °C. After organic and aqueous phases separation the residual concentration of cesium in an aqueous phase was measured operating ICP iCAP 6000 instrument (model iCAP 6300 Duo).

An extraction degree $(R_{Cs}^{L}, \%)$ and the distribution coefficient (D_{Cs}^{L}) have been calculated according to equations (1) and (2):

$$R_{C_{S}}^{L}, \% = \left(1 - \frac{C_{w}(C_{S})}{C_{0}(C_{S})}\right) \times 100\%, \qquad (1)$$

$$D_{Cs}^{L} = \frac{C_{o}(Cs)}{C_{w}(Cs)} = \frac{V_{w}}{V_{o}} \cdot \frac{R_{Cs}^{L}\%}{100 - R_{Cs}^{L}\%},$$
(2)

where $C_0(Cs)$ and $C_w(Cs)$ indicate the initial and equilibrium cesium concentrations in aqueous phase, while V_w and V_o correspond to the total volumes (ml) of aqueous and organic phases respectively. The standard errors of R_{Cs}^{L} , and D_{Cs}^{L} measurement are estimated to be within 10 %.

The results are presented in Table 1 and Figures 2, 3. Where it is possible the extraction data are referred to the stability constants of cesium with crown ethers in aqueous $(\log K_{\rm ML}^{W})$ and in RTIL phase $(\log K_{\rm ML}^{\rm RTIL})$.^[17-20] The priority was given to the IUPAC critically evaluated values.^[17]

Results and Discussion

When L is not present in [BMIM][N(Tf),], then cesium is poorly extracted. The corresponding $\log D_{C_s}$ value constitutes -0.67.^[16] An administration of L into a RTIL phase enhances cesium accumulation (Table 1). For 18C6 and DB18C6 the $\log D_{Cs}^{L}$ values agree well with those found by us earlier:^[16] 1.56 and 2.06 respectively. The higher values reported in [16] in comparison with present data are due to the higher L/Cs mole ratio $(C(18C6)_0 = 1.5 \cdot 10^{-1} \text{ mol} \cdot \text{dm}^{-3}, C(Cs^+)_0 = 5 \cdot 10^{-4} \text{ mol} \cdot \text{dm}^{-3})$ relative to the present study. An increase of L/Cs leads to a higher $\log D_{C_s}^{L}$ values. It should be noted that relative to 1,2-dichloroethane (1,2DCE) in presence of 18C6 ($\log D_{c_0}$ 0.8)^[5] the RTIL medium appears to be much preferable $(\log D_{C_{s}} 1.3)$. The similar effect was also observed for dicyclohexane-18-crown-6 assisted cesium extraction into $[BMIM][N(Tf)_2]$ and 1,2DCE: D_{Cs}^{L} for RTIL constituted 80, while for 1,2DCE 0.080.^[9] Actually the differences between [BMIM][N(Tf),] and 1,2DCE are even more drastic as far as L concentration was smaller for RTIL (0.01 mol·dm⁻³) than for 1,2DCE (0.43 mol·dm⁻³).^[9]

In our case within the set of crowns 12C4, 15C5, 18C6, DB18C6, DB21C7 and DB24C8 the D_{Cs}^{L} are changing in a non monotonous way as the cavity size^[22,23] is increasing, indicating a maximal value for DB21C7 (Table 1, Figure 2).

Table 1. The $D_{C_{s}}^{L}$ values for a crown ether assisted cesium extraction from aqueous solution into [BMIM][N(Tf_2)] at 22 °C.

L	$R_{\rm Cs}^{\rm L}$, %	$D_{\rm Cs}{}^{\rm L}$	$\log D_{\rm Cs}^{\rm L}$	$\log K_{\rm CsL}^{\rm RTIL}$	$\log K_{\rm CsL}^{\rm w}$	Crown cavity size $R_{\rm L}$, nm ^[22,23]
12C4	Extraction is not detected			1.42 ^[19]	No data	0.06
15C5	17	2.0	0.30	1.75 ^[19]	0.80 ^[17]	0.086-0.092
18C6	50	19	1.3	3.40 ^[19]	0.96 ^[17]	0.134-0.143
DB18C6	26	14	1.3	3.47 ^[20]	0.74[21]	0.134-0.143
DB21C7	82	47	1.7	3.52 ^[20]	No data	0.17
DB24C8	46	8.6	0.9	2.91[20]	1.41[21]	0.20

Макрогетероциклы / Macroheterocycles 2015 8(2) 181-184

Figure 2. $\log D_{Cs}^{L}(\log D)$ dependence on the crown cavity size R_L for 15C5, 18C6, DB18C6, DB21C7 and DB24C8.

Indeed, for 12C4, 15C5, 18C6 and DB18C6 the cavity size is smaller than cesium ion diameter (0.17 nm^[22]), while for DB24C8 it is remarkably bigger. According to the crystallographic data and the structural data for the aqueous phase^[24,25] the cesium cation in its complexes with 18C6 is placed slightly above the plane, constituted by the oxygen atoms of the ligand, being a bit bigger than the cave size. The best cation-cave fitting should take place for DB21C7. Then a change of DB21C7 for DB24C8 should lead to some decrease of CsL thermodynamic stability (log K_{csL}^{RTIL}), and therefore, to a corresponding decrease in the extraction efficiency.

As could be seen from the Table 1, the $\log K_{CsL}^{RTIL}$ values are sufficiently higher than those for the aqueous phase $(\log K_{CsL}^{"})$. At the same time both $\log K_{CsL}^{RTIL}$ and $\log D_{Cs}^{L}$ values change in a similar way as the crown cavity size is increasing. In turn it gives a linear correlation between $\log D_{Cs}^{L}$ and $\log K_{CsL}^{RTIL}$ (Figure 3) with the slope ~1.4 and $R^2 = 0.88$.

A linear correlation between $(\log D_{Cs}^{L} - \log D_{Cs} - \log D_{L})$ and $\log K_{CsL}^{RTIL}$ has been observed by us earlier for $[Cs(18C6)]^+$ and $[Cs(DB18C6)]^+$ complexes in six hydrophobic RTILs,^[15,20] where $\log D_{Cs}$ corresponds to a cesium distribution without crown ether, while $\log D_{L}$ – to the distribution of L between aqueous and RTIL phases. Meanwhile, a direct correlation between $\log D_{Cs}^{L}$ and $\log K_{CsL}^{RTIL}$ was not detected for these systems. Such a correlation indicates a dominating role of complex formation in a RTIL phase in the crown ether assisted extraction processes. For cesium transfer from neutral aqueous solution into RTIL phase an ion exchange mechanism prevails^[29](3):

$$Cs^{+}_{w}+NO_{3^{-}w}^{-}+L_{RTIL}+n[ZX]_{RTIL} \Leftrightarrow [CsL][X_{n}]_{RTIL}^{1-n}+NO_{3^{-}w}^{-}+(n-1)Z^{+}_{RTIL}, \quad (3)$$

where indexes "RTIL" and "w" denote organic and aqueous phase respectively, while Z^+ and X correspond to the RTIL's cation and anion, and L indicates a crown ether molecule.

Neglecting a small contribution of $[Cs(18C6)_2]^+$ and $[Cs(DB18C6)_2]^+$ species in $[BMIM][N(Tf)_2]$ to the total thermodynamic stability, one can express the distribution coefficient of cesium between aqueous and $[BMIM][N(Tf)_2]$ phases in presence of crown ethers D_{Cs}^{L} by a rather simple equation (4):

$$D_{C_{s}}^{L} = ([C_{s}]^{RTIL} + [C_{s}L]^{RTIL})/([C_{s}]^{w} + [C_{s}L]^{w})$$
(4)

As far as the total concentration of L $[L]^{\circ} >> [Cs]^{\circ}$ (total cesium concentration); the stability constants of CsL complexes in a RTIL phase are high enough $(\log K_{CsL}^{RTIL} \ge 2)$, and $[L]^{RTIL} >> [Cs]^{RTIL}$, then $[Cs]^{RTIL} << [CsL]^{RTIL}$ and equilibrium concentrations $[Cs]^{RTIL}$ could be neglected. At the same time for an aqueous phase the $\log K_{CsL}^{w}$ are comparatively small, and $[CsL]^{w} << [Cs]^{w}$. Thus, $[CsL]^{w}$ values can be neglected. Therefore (4) can be transmitted into (5):

$$D_{\rm Cs}^{\ \ \rm L} = [\rm CsL]^{\rm RTIL} / [\rm Cs]^{\rm w}$$
⁽⁵⁾

or

$$D_{\rm Cs}^{\ \ \rm L} = (K_{\rm CsL}^{\ \ \rm RTIL}[\rm Cs]^{\rm RTIL}[\rm L]^{\rm RTIL})/[\rm Cs]^{\rm w}.$$
(6)

Taking into account that $[Cs]^{RTIL}/[Cs]^{w}=D_{Cs}$ the following expression is valid:

$$D_{\rm Cs}^{\ \ \rm L} = K_{\rm CsL}^{\ \ \rm RTIL} D_{\rm Cs}^{\ \ \rm L} [\rm L]^{\rm RTIL}$$

$$\tag{7}$$

or

$$\log D_{C_{s}}^{L} = \log K_{C_{s}}^{RTIL} + \log D_{C_{s}} + \log([L]^{RTIL})$$
(8)

Figure 3. A correlation between $\log D_{CS}^{L}$ and $\log K_{CSL}^{RTIL}$ values for 15C5, 18C6, DB18C6, DB21C7 and DB24C8 at 22-25 °C.

Crown Ethers Assisted Cesium Extraction into Ionic Liquid

In contrast to the reports,^[15,20] in our case we have a single RTIL. Therefore $logD_{Cs}$ is a constant for all the L series. At the same time $[L]^o \gg [Cs]^o$, and most of crowns used are poorly soluble in water, then an equilibrium concentration $[L]^{RTIL}$ should not change significantly for different crowns and would be close to $[L]^o$.

Therefore, a dependence of $\log D_{Cs}^{L}$ on $\log K_{CsL}^{RTIL}$ should be linear with the slope 1. Some deviation from this slope, presented in Figure 3 is probably due to some change of crowns solubility in an aqueous phase relative to each other. This relative solubility should also correlate with CsL complex stability: the less water soluble crowns form more stable complexes CsL in a RTIL phase. This statement is valid only for hydrophobic crowns. For example, 12C4 is water soluble. Then it reveals no extraction enhancement although the corresponding [Cs(12C4)]⁺ complex is rather stable in the [BMIM][N(Tf)₂] phase.

Conclusions

The thermodynamic stability of complexes in RTIL is of key importance for cesium extraction from aqueous phase into RTIL. The $\log D_{Cs}^{\ L}$ values increase steadily from 0.30 to 1.7 when 15C5 is changed for 18C6, DB18C6 and DB21C7, but then they decrease up to 0.94 (DB24C8). The maximal value for $\log D_{Cs}^{\ L}$ is observed for DB21C7 with the best fitting cesium ion radius and cavity size. For a set of crowns 12C4, 15C5, 18C6, DB18C6, DB21C7, and DB24C8 in [BMIM][N(Tf)₂] a linear relationship between $\log D_{Cs}^{\ L}$ and $\log K_{CsL}$ is found and is interpreted.

Acknowledgements. The authors would like to thank the Russian Foundation for Basic Research (Project No. 13-08-00246) for the financial support of this work.

References

- 1. Bradshaw J.S., Izatt R.M. Acc. Chem. Res. 1997, 30, 338-345.
- Takeda Y., Kawarabayashi A., Endō K., Yahata T., Kudo Y., Katsuta S. Anal. Sci. 1998, 14, 215–223.
- 3. Robak W., Apostoluk W., Maciejewski P. Anal. Chim. Acta 2006, 569, 119–131.

- Levitskaia T.G., Maya L., van Berkel G.J., Moyer B.A. *Inorg. Chem.* 2007, 46, 261–272.
- 5. Abramov A.A. Vestnik Mosk. Univ., Ser. 2: Khim. (Moscow Univ. Chem. Bull.) 2000, 41, 3–15 (in Russ.).
- 6. Dai S., Ju Y.H., Barnes C.E. J. Chem. Soc., Dalton Trans. 1999, 1201–1202.
- Visser A.E., Swatloski R.P., Reichert W.M., Griffin S.T., Rogers R.D. Ind. Eng. Chem. Res. 2000, 39, 3596–3604.
- Chun S., Dzyuba S.V., Bartsch R.A. Anal. Chem. 2001, 73, 3737–3741.
- Yakshin V.V., Tsarenko N.A., Koshcheev A.M., Tananaev I.G., Myasoedov B.F. *Radiochemistry (Moscow, Russian Federation)* 2012, 54, 54–58.
- 10. Garvey S.L., Dietz M.L. Sep. Purif. Technol. 2014, 123,145-152.
- 11. Sun Tao Xiang, Shen Xing Hai, Chen Qing De Sci. China Chem. 2013, 782–788.
- 12. Turanov A.N., Karandashev V.K., Baulin V.E. *Solvent Extr. Ion Exch.* **2012**, *30*, 244–261.
- Germani R., Mancini M.V., Spreti N., Di Profio P., Savelli G. Green and Sustainable Chemistry 2011, 1, 155–164.
- Torrejos R.E.C., Nisola G.M., Park M.J., Beltran A.B., Seo J.G., Lee S.-P, Chung W.-J. Desalination and Water Treatment 2015, 53, 2774–2871.
- Vendilo A.G., Djigailo D.I., Rönkkömäki H., Lajunen M., Chernikova E.A., Lajunen L.H.J., Pletnev I.V., Popov K.I. *Mendeleev Commun.* 2010, 20, 122–124.
- Vendilo A.G., Djigailo D.I., Smirnova S.V., Torocheshnikova I.I., Popov K.I., Krasovsky V.G., Pletnev I.V. *Molecules* 2009, *14*, 5001–5016.
- 17. Arnaud-Neu F., Delgado R., Chaves S. *Pure Appl. Chem.* **2003**, 75, 71–102.
- IUPAC Stability Constants Database. Version 2007, Academic Software, Timble, UK.
- Vendilo A., Popov K., Lajunen M., Chistov V., Djigailo D., Rönkkömäki H., Privalov V., Pletnev I. *Polyhedron* 2014, *81*, 341–348.
- Vendilo A.G., Chistov V.I., Privalov V.I. Russ. J. Inorg. Chem. 2012, 57, 629–633.
- Buschmann H.-J., Cleve E., Denter U., Schollmeyer E. J. Phys. Org. Chem. 1997, 10, 781–785.
- 22. Pedersen C.J. Angew. Chem., Int. Ed. 1988, 27, 1021-1027.
- Lamb J.D., Izatt R.M., Swain C.S., Christensen J.J. J. Am. Chem. Soc. 1980, 102, 475–482.
- 24. Gjikaj M., Adam A. Z. Anorg. Allg. Chem. 2006, 632, 2475-2480.
- Ellerman J., Bauer W., Schuetz M., Heinemann F.W., Moll M. Monatshefte fuer Chemie 1998, 129, 547–566.
- Ozutsumi K., Natsuhara M., Ohtaki H. Bull. Chem. Soc. Jpn. 1989, 62, 2807–2818.
- 27. Dang L.X. J. Am. Chem. Soc. 1995, 117, 6954-6969.

Received 11.12.2014 Accepted 22.04.2015