DOI: 10.6060/mhc140492m

Комплексообразующие свойства окта-(4-бромфенил)тетраазапорфирина и его магниевого комплекса с солями *d*-металлов в ДМФА

С. В. Звездина,[@] О. В. Мальцева, Н. В. Чижова, Н. Ж. Мамардашвили

Посвящается член-корреспонденту РАН Оскару Иосифовичу Койфману по случаю его юбилея

Федеральное государственное бюджетное учреждение науки Институт химии растворов им. Г.А. Крестова Российской академии наук, 153045 Иваново, Россия @E-mail: svvr@isc-ras.ru

Изучена реакция металлообмена окта-(4-бромфенил)тетраазапорфирината магния с хлоридами меди(II) и кобальта(II) и проведен сравнительный анализ данных по константам скоростей реакций, полученных при металлообмене, с данными по константам скоростей реакций комплексообразования окта-(4-бромфенил) тетраазапорфирина-лиганда с этими же солями в диметилформамиде.

Ключевые слова: Окта-(4-бромфенил)тетраазапорфирин, комплексы магния, синтез, комплексообразующие свойства, реакция металлообмена.

Complexation Properties of Octa(4-bromophenyl)tetraazaporphyrin and Its Magnesium(II) Complex with Salts of d-Metals in DMF

S. V. Zvezdina,[@] O. V. Mal'tseva, N. V. Chizhova, and N. Zh. Mamardashvili

Dedicated to the Corresponding member of RAS Prof. Oscar I. Koifman on the occasion of his Anniversary

G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia @Corresponding author E-mail: svvr@isc-ras.ru

Metal exchange between Mg(II)-octa-(4-bromophenyl)tetraazaporphyrin with copper and cobalt chlorides in dimethylformamide was studied by spectrophotometry. Comparative analysis of the data on reaction rate constants of metal exchange and of octa-(4-bromophenyl)tetraazaporphyrin complexation with the same salts in DMF was performed.

Keywords: Octa-(4-bromophenyl)tetraazaporphyrin, magnesium complexes, synthesis, complexation properties, reaction of metal exchange.

Введение

Порфирин – это удивительный макроцикл, который создала природа в процессе эволюции для осуществления своих важнейших биологических, фотохимических и ферментативных функций.^[1-3] Порфирины и их комплексы с d-металлами используются как фотосенсоры, хемосенсоры и основы для создания новых материалов.^[4] Высокая прочность большинства комплексов порфиринов и по существу безграничные возможности варьирования структуры их молекул за счет функциональных заместителей, делают класс синтетических металлопорфиринов одним из наиболее перспективных для создания на их основе химических и биологических катализаторов.

Одной из важнейших реакций, в которые могут вступать комплексы порфиринов, является металлообмен.^[5]

Реакции металлообмена с природными порфиринами протекают в биосистемах животных и растений и играют важную роль в регулировании биологических процессов. Кроме этого, реакции металлообмена нашли широкое практическое применение для синтеза труднодоступных комплексов природных и синтетических порфиринов.

Экспериментальная часть

Окта-(4-бромфенил)тетраазапорфиринат магния (MgTAP(PhBr)) синтезировали при циклизации ди-(4бромфенил)малеиндинитрила с металлическим магнием в две стадии. В стакан, охлаждаемый льдом, помещали 5.1 г (0.02 моль) йода в 15 мл метанола, прибавляли 3.94 г (0.02 моль) 4-бромфенилацетонитрила, 130 мл диэтилового эфира. При интенсивном перемешивании к реакционной смеси прибавляли по каплям холодный раствор 0.95 г (0.043 моль) натрия в 16 мл метанола. Реакционную смесь перемешивали в течение 1 часа. Выпавший осадок отфильтровывали, промывали водой. Фильтрат промывали водой, разбавленным раствором тиосульфата натрия, снова водой. Выкристаллизовавшийся после длительного стояния ди-(4-бромфенил)малеиндинитрил отфильтровывали, высу-шивали. Получено 2.5 г (0.00644 моль) (64%) ди-(4-бром-фенил)малеиндинитрила. На второй стадии синтезировали магниевый комплекс окта-(4-бромфенил) тетраазапорфирина. Тонкоизмельченную смесь 0.5 г (0.00129 моль) ди-(4-бромфенил)малеиндинитрила И 0.0314 г (0.00129 моль) металлического магния нагревали 15 мин при 275 °C. Образовавшийся продукт растворяли в хлористом метилене и дважды хроматографировали на оксиде алюминия сначала хлористым метиленом, затем хлороформом. Выход MgTAP(PhBr)₈ 0.28 г (0.178 ммоль) (55%). ЭСП (ДМФА) х нм lg(ε): 381 (4.89), 586 (4.31), 639 (4.92).¹Н ЯМР (CDCl₃) б м.д.: 7.55 д. (16Н, *орто*-С₆Н₄), 7.35 д. (16Н, мета-С₆Н₄).

Окта-(4-бромфенил) тетраазапорфирин $(H_2TAP(PhBr)_8)$ был получен при обработке его магниевого комплекса трифторуксусной кислотой в хлороформе. ¹Н ЯМР (CDCl₃ в присутствии CF₃COOH) δ м.д.: 7.62 д. (16H, *орто*-C₆H₄), 7.40 д. (16H, *мета*-C-C₆H₄).

Хлориды кобальта и меди прокаливали при 200 °С в течение 4 ч. В ходе эксперимента использовали ДМФА фирмы Merck.

Изучение реакции металлообмена проводили на спектрофотометре Cary 100 фирмы Varian. Методика эксперимента и обработка экспериментальных данных подробно описаны в работе.^[6]

Результаты и их обсуждение

В реакциях металлообмена практически всегда участвуют соли переходных металлов, которые в растворах находятся в виде разнообразных сольватокомплексов. Уравнение реакции металлообмена в общем виде можно записать следующим образом:

$$MP + M'X_n(Solv)_{m-n} \rightarrow M'P + MX_n(Solv)_{m-n}$$
(1),

где МР и М/Р – металлопорфирины, М/X_n(Solv)_{m-n} – сольватокомплексы металлов.

Целью нашей работы явилось изучение реакции металлообмена окта-(4-бромфенил)тетраазапорфирината магния с CuCl₂ и CoCl₂ в ДМФА и проведение сравнительного анализа данных по константам скоростей реакций, полученных при металлообмене, с данными по константам скоростей реакций при образовании комплексов окта-(4-бромфенил)тетраазапорфирина с этими же солями в ДМФА.

(I). M=Mg, MgTAP(PhBr)₈; (II). M=2H, H₂TAP(PhBr)₈

На Рисунке 1 приведен характер изменения ЭСП в ходе реакции металлообмена MgTAP(PhBr)₈ с CuCl₂ в ДМФА. Экспериментальные данные представлены в Таблицах 1, 2.

В ходе исследования реакции металлообмена MgTAP(PhBr)₈ с CuCl₂ и CoCl₂ в ДМФА обнаружено, что скорость реакции металлообмена описывается уравнением первого порядка по концентрации комплекса, о чем свидетельствует прямолинейная зависимость $lg(C^{0}_{MgTAP(PhBr)_{8}}/C_{MgTAP(PhBr)_{8}})$ от времени прохождения реакции τ . Характер данной зависимости представлен на Рисунке 2. Экспериментальные данные показывают, что скорость реакции металлообмена в обоих случаях

Рисунок 1. Изменение ЭСП в ходе реакции металлообмена MgTAP(PhBr)₈ с CuCl₂ в ДМФА при $C_{MgTAP(PhBr)_8} = 2.5 \cdot 10^{-5}$ моль/л, $C_{CuCl_2} = 2.5 \cdot 10^{-3}$ моль/л, T=298 К.

имеет первый порядок по соли. Характер зависимости $\lg k_{_{3\Phi}} = f(\lg C_{_{\text{соли}}})$ представлен на Рисунке 3.

Исходя из экспериментальных данных установлено, что в обоих случаях реакция протекает по ассоциативному механизму, на первой стадии которого образуется интермедиат:

 $MgP+[M(solv)_{n-2}Cl_2] \Leftrightarrow [Mg-P-M(solv)_{n-4}]^{2+\dots}2Cl^{2}+2solv, (2)$

где MgP = MgTAP(PhBr)₈, M=Cu²⁺или Co²⁺; solv=ДМФА.

Рисунок 2. Зависимость $log(C_{MgP}^{0}/C_{MgP})$ от времени взаимодействия MgTAP(PhBr)₈ с CuCl₂ в ДМФА при $C_{CuCl_2} = 1.5 \cdot 10^{-3}$ моль/л и T = 288 (*I*), 298 (*2*), 308 К (*3*).

На второй стадии интермедиат медленно распадается с образованием более прочного комплекса Cu²⁺ или Co²⁺ и сольватосоли магния:

$$[Mg-P-M(solv)_{n-4}]^{2+\dots}2Cl^{-} \rightarrow MP+[MgCl_{2}(solv)_{n-2}] \quad (3)$$

В ходе проведения эксперимента установлено, что реакция металлообмена $MgTAP(PhBr)_8$ в ДМФА протекает в 1546 раз быстрее с CuCl₂, по сравнению с CoCl₂. Обнаружено, что при взаимодействии MgTAP(PhBr)₈

Таблица 1. Скорости обмена Mg^{2+} на Cu^{2+} в комплексе $MgTAP(PhBr)_8$ в ДМФА ($C_{MgTAP(PhBr)_8} = 2.5 \cdot 10^{-5}$ моль/л).

C_{CuCl_2} ·10 ³ , моль/л	Т, К	$k_{_{9\Phi}}$ ·10 ⁴ , c ⁻¹	<i>k</i> _v , л/(моль·с)	$E_{\rm a}$, кДж/моль	ΔЅ≠, Дж/(моль∙К)
2.5	288	4.78±0.10	0.19		
	298	7.73±0.08	0.31	38±4	-185±12
	308	13.36±0.06	0.53		
2.0	288	3.62±0.06	0.18		
	298	5.78±0.03	0.29	38±5	-186±17
	308	10.25±0.01	0.51		
1.5	288	2.85±0.03	0.19		
	298	4.40±0.03	0.29	36±5	-197±17
	308	7.54±0.06	0.50		

Таблица 2. Скорости обмена Mg^{2+} на Co^{2+} в комплексе $MgTAP(PhBr)_8$ в ДМФА ($C_{MgTAP(PhBr)_9} = 2.5 \cdot 10^{-5}$ моль/л).

С _{соСl2} ·10 ³ , моль/л	Т, К	$k_{_{3\phi}} \cdot 10^4$, c ⁻¹	<i>k</i> _v , л/(моль·с)	$E_{\rm a}^{},$ к Дж/моль	ΔЅ≠, Дж/(моль∙К)
2.5	298*	0.05	0.02	106±11	-17±37
	328	2.77±0.11	1.11		
	338	7.80±0.42	3.12		
	348	25.88±0.89	10.35		
2.0	298*	0.04	0.02	106±16	-18±55
	328	2.38±0.11	1.19		
	338	6.34±0.42	3.17		
	348	22.29±0.14	11.15		
1.5	298*	0.03	0.02	107±20	-17±66
	328	1.75±0.10	1.17		
	338	4.54±0.23	3.03		
	348	16.72±1.00	11.15		

* - Рассчитанное значение.

Рисунок 3. Зависимость $\log k_{_{3\Phi_1}}$ от $\log C_{_{\text{СиСl}_2}}$ в реакции металлообмена MgTAP(PhBr) $_8$ с CuCl $_2$ в ДМФА при T = 288 К (1), 298 (2), 308 К (3).

с CoCl₂ в ДМФА образуется порфиринат Co(II) (λ_1 612 нм, λ_{II} 562 нм, λ_{Cope} 348 нм). В течение суток происходит окисление реакционной смеси в ДМФА с образованием Co^{III}TAP(PhBr)₈ (λ_1 630 нм, λ_{II} 572 нм, λ_{Cope} 390 нм). Co^{II}TAP(PhBr)₈, как и октаэтилпорфиринат Co(II),^[7] проявляет парамагнитные свойства (конфигурация 3d⁷). ¹Н ЯМР-спектр Co^{II}TAP(PhBr)₈ (δ , м.д., CDCl₃): 15.35 шир. с. (16 H, *орто*-C₆H₄), 10.16 с. (16 H, *мета*-C₆H₄). Окисление Co(II)→Co(III) (конфигурация 3d⁶) приводит к существенному смещению сигналов *орто*- и *мета*протонов в сильное поле. ¹Н ЯМР-спектр Co^{III}TAP(PhBr)₈ (δ , м.д., CDCl₃): 7.85 д. и 7.73 д. (16 H, *орто*-C₆H₄), 7.57 д. (16 H, *мета*-C₆H₄).

Установлена применимость спектрального критерия прочности к металлокомплексам. Согласно ему термодинамическая устойчивость комплексов металлов в ряду однотипных соединений тем выше, чем больше гипсохромное смещение полосы I металлопорфирина (МР) по сравнению с полосой I порфирина-лиганда (H₂P).^[8] На основании электронных спектров поглощения (Таблица 4) показано, что спектральный критерий прочности применим к комплексам изученного нами окта(*n*бромфенил)тетраазапорфирина.

Нами проведен сравнительный анализ данных по константам скоростей реакций, полученных при металлообмене MgTAP(PhBr)₈ с CuCl, и CoCl,, с данными по константам скоростей реакций при образовании комплексов H, TAP(PhBr)₈ с этими же солями в ДМФА. Установлено, что скорости реакции комплексообразования (2) и металлообмена (1) с CuCl, практически совпадают, а скорость реакции комплексообразования с CoCl, в 644 раза больше, чем скорость реакции металлообмена в аналогичных условиях. Изменение ЭСП в процессе реакции H, TAP(PhBr), с CuCl, в ДМФА представлено на Рисунке 4. 100-кратный молярный избыток соли относительно порфирина позволяет описать реакцию уравнением псевдопервого порядка по порфирину. В Таблице 3 представлены кинетические параметры реакции комплексообразования H, TAP(PhBr)₈ с хлоридами Cu(II), Co(II)

Рисунок 4. Изменение ЭСП в процессе реакции H_2 TAP(PhBr)₈ с CuCl₂ в ДМФА при 298 К (C_{H_2 TAP(PhBr)₈</sub> = 2.5·10⁻⁵ моль/л, C_{CuCl_2} =2.5·10⁻³ моль/л).

Таблица 3. Кинетические параметры реакции комплексообразования H_2 TAP(PhBr)₈ с хлоридами Cu(II), Co(II) в ДМФА ($C_{\text{соли}} = 2.5 \cdot 10^{-3} \text{ моль/л}, C_{H_3\text{TAP}(PhBr)_9} = 2.5 \cdot 10^{-5} \text{ моль/л}$).

Соль	Т, К	$k_{ m solphi}$ ·10 ⁴ , c ⁻¹	k_v^{298} , л·моль-1·с-1	$E_{\rm a}$, кДж/моль	∆ <i>Ѕ</i> ≠, Дж/(моль∙К)
CoCl ₂	288 298 308	$\begin{array}{c} 1.68 \pm 0.03 \\ 3.22 \pm 0.10 \\ 6.31 \pm 0.52 \end{array}$	1.29	54.9 ± 15.0	-67 ± 47
CuCl ₂	288 298 308	$\begin{array}{c} 4.85 \pm 0.01 \\ 8.95 \pm 0.13 \\ 19.93 \pm 0.78 \end{array}$	3.58	52.3 ± 9.0	-67 ± 30

Таблица 4. Характеристики электронных спектров поглощения H₂TAP(PhBr)₈ и его комплексов с хлоридами Cu(II), Co(II) и Mg(II) в ДМФА.

Порфирин	λ_{I}	$\lambda_{_{\rm II}}$	$\lambda_{_{ m III}}$	λ_{Cope}	$\Delta\lambda_{I}^{*}$
H ₂ TAP(PhBr) ₈	666		605	368	
CuTAP(PhBr) ₈	627	573		370	-39
CoTAP(PhBr) ₈	612	562		348	-54
MgTAP(PhBr) ₈	639	586		381	-23

 $\Delta \lambda_1 - c$ двиг полосы I поглощения в электронном спектре тетраарилпорфиринов в процессе комплексообразования ($\Delta \lambda_1 = \lambda_1^{MP} - \lambda_1^{H2P}$)

Complexation Properties of Octa(4-bromophenyl)tetraazaporphyrin and its Mg^{II} Complexes

в ДМФА. В Таблице 4 представлены характеристики электронных спектров поглощения H₂TAP(PhBr)₈ и его комплексов Cu(II), Co(II) и Mg(II) в ДМФА.

В ходе исследований нами выявлена сильная зависимость скорости реакции от природы металла и порфирина. Октабромфенильное замещение в молекуле снижает чувствительность лиганда к природе металла. Низкие значения энергии активации E_a свидетельствуют о сильной ионизации внутрициклических NH-связей под действием органического основания.

В ЭСП H₂TAP(PhBr)₈ в ДМФА присутствуют две характерные полосы в видимой области с максимумами поглощения при 605 и 666 нм. При добавлении к раствору порфирина в ДМФА раствора с CuCl₂ при комнатной температуре наблюдаются закономерные изменения ЭСП: 1) уменьшается интенсивность полос лиганда вплоть до их полного исчезновения; 2) возникает и растет интенсивность полосы поглощения при 627 нм. В процессе изменения спектров сохраняются четкие изобестические точки, свидетельствующие о присутствии в системе в каждый момент времени только двух окрашенных соединений.

 $H_{2}TAP(PhBr)_{8}$

Как было показано ранее,^[9] введение большого числа крупных по размерам заместителей приводит не только к изменению эффективного заряда в реакционном центре молекулы за счет электронодонорного или электроноакцепторного влияния, но и к значительной деформации плоскостной структуры ароматического полиамина. Однако расчет геометрических параметров методом DFT (метод расчета B3LYP/6-31G*) показал, что H₂TAP(PhBr)₈ имеет близкую к плоской структуру макроцикла, несмотря на наличие восьми объемных заместителей. Введение восьми фенильных заместителей, обладающих –І-эффектом, способствует уменьшению отрицательного заряда на центральных атомах азота. При введении атомов брома в β -положения фенильных фрагментов число π -электронов в сопряженной системе макроцикла возрастает, что приводит к большей ароматичности H_2 TAP(PhBr)₈, по сравнению с исходным H_2 TAPPh₈. Эти факторы могут оказывать влияние на протекание реакций с участием порфиринов-лигандов и их металлокомплексов. Так, скорости реакций комплексообразования H_2 TAP(PhBr)₈ и металлообмена MgTAP(PhBr)₈ с CuCl₂ в ДМФА приблизительно на порядок выше по сравнению с октафенилтетраазапорфирином и его Mg комплексом.

Приведенные данные иллюстрируют своеобразие комплексообразования и металлообмена тетраазапорфиринов с катионами металлов и свидетельствуют о необходимости продолжения исследования особенностей этой реакции для азапорфиринов различного строения в зависимости от природы соли и растворителя. Полученные данные представляют интерес для координационной химии порфиринов и могут быть использованы при создании селективных макроциклических рецепторов под определенный тип субстрата, изотопном обмене, конструировании металлических кластеров и функциональных металлоорганических соединений.

Благодарности. Работа выполнена при поддержке Российского научного фонда (проект № 14-13-00232).

References

Список литературы

- Berezin B.D., Enikolopyan N.S. *Metalloporphyrins*, Moscow: Nauka, **1988**. 159 р. (in Russ.) [Березин Б.Д., Ениколопян Н.С. *Металлопорфирины*, М.: Наука, **1988**. 159 с.].
- Mamardashvili G.M., Mamardashvili N.Zh., Koifman O.I. Russ. Chem. Rev. 2008, 77, 59-75 [Uspekhi Khim. 2008, 77, 60-77 (in Russ.)].
- Mamardashvili G.M., Mamardashvili N.Zh., Koifman O.I. Russ. Chem. Rev. 2005, 74, 765-780 [Uspekhi Khim. 2005, 74, 839-855 (in Russ.)].
- Porphyrins: Spectroscopy, Electrochemistry, Application (Enikolopyan N.S., Ed.), Moscow: Nauka, 1987. 384 р. (in Russ.) [Порфирины: спектроскопия, электрохимия, применение (Ениколопян, ред.), М.: Наука, 1987. 384 с.].
- Hambright P. Chemistry of Water Soluble Porphyrins. In: *The Porphyrin Handbook* (Smith K., Guillard R., Eds.) San Diego: Wiley, **1999**, Vol. 3, pp. 132-208.
- Zvezdina S.V., Mamardashvili N.Zh. Russ. J. Coord. Chem. 2012, 38, 319-324 [Koord. Khim. 2012, 38, 333-338 (in Russ.)].
- Ali B.B., Belkhiria M.S., Giorgi M., Nasri H. Open J. Inorg. Chem. 2011, 1, 39-46.
- Berezin B.D. Coordination Compounds of Porphyrins and Phthalocyanine, Moscow: Nauka, 1978. 280 p. (in Russ.) [Березин Б.Д. Координационные соединения порфиринов и фталоцианина, М.: Наука, 1978. 280 с.].
- Zvezdina S.V., Mal'eseva O.V., Chizhova N.V., Mamardashvili N.Zh., Scheblykin I.G. *Russ. J. Inorg. Chem.* **2013**, *58*, 486-490 [*Zh. Neorg. Khim.* **2013**, *58*, 553-557 (in Russ.)].

Received 28.04.2014 Accepted 15.06.2014