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 A multiple linear regression (MLR) model in quantitative structure property relationship (QSPR) was developed 
for predicting stability constant of 56 complexes of hemispherands with lithium at standard temperature (25°C) and 
just in CDCl3 saturated with D2O. A large number of descriptors were calculated with Dragon software and a subset 
of calculated descriptors was selected from 6 classes of Dragon descriptors with a forward stepwise regression as a 
feature selection technique. Five calculated descriptors were selected as the most feasible descriptors. The data was 
randomly divided to the training and prediction. The predictive ability of the model was evaluated using leave–one–out 
(LOO) cross–validation method. The obtained model showed high prediction ability with root mean square error of 
prediction (RMSEP), 0.65, and square correlation coefficient (R2) of 0.920.
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Introduction

Supramolecular chemistry and the quantification of 
non-covalent interaction (electrostatic forces, hydrogen 
bonding and van der Waals interactions) offer the basis 
for novel approaches in medicine, host-guest chemistry,[1-6] 
chromatography, and biocatalysis.[8] The development of 
artificial receptors capable of forming complexes with specific 
guests[9-13] is important to the progress of supramolecular 
host-guest chemistry.

In host-guest complexation, the concave surface of a 
host complements the convex surface of a guest. Similarly, 
the receptor sites of enzymes frequently contain rigid cavities 
whose internal surfaces complement the convex surfaces of 
substrates or inhibitors. 

The conformational ambiguity of the crown ethers 
may be reduced by restricting rotation about single bonds in 
the crown ether macrocycle either by fusion of an aromatic 
ring.  The latter strategy has been used most effectively by 
Cram and his co-workers in the increasingly pre-organized 
hemispherand and spherand systems.[14]

The principle of preorganization is that the logK for 
host-guest complex formation is increased significantly, 
if the host and guest are organized for binding and have 
low solvation prior to complexation. This principle was 
experimentally demonstrated by the synthesis of spherands 
designed to complex selectively with Li+ and Na+ cations.
[15] Hemispherands can be rigidified further by incorporating 
extra bridges which sometimes contain additional binding 
sites.[16-18] The majority of preorganized macrocycles form 
very stable complexes with target cations in at least some 
solvents, and part of them show significant selectivity.[19]

The efficiency and selectivity, with which these 
compounds can complex a cation, relies on a number of 
factors, e.g.: (i) shape and preorganization within the host 
molecule, (ii) the size-match of the host cavity to the guest,[20] 
(iii) cation charge and type, and (iv) donor atom charge 
and type. Each of these factors is discussed more detailed 
below. 

The principle of preorganization states that host-guest 
binding is the strongest when only very small changes 
in organization of host, guest and solvent are required 
for complexation.[21] Alkali metal cations are spherical; 
therefore, they prefer a spherical donor atom array in the host 
compound. In order to achieve this geometry some degree of 
preorganization in the host molecule is required.

Pedersen was the first who suggested the "size-fit" 
principle in his seminal paper of 1968.[20] He has found that the 
crown-4 hosts selectively bind Li+, crown-5 hosts selectively 
bind Na+, and crown-6 systems complex selectively with K+. 
He has concluded that these results reflect the relative size 
of each cation vis a vis the size and shape of the host cavity, 
in each case. The size-fit principle does have its limitations; 
cations too large or too small to fit within a cavity may still 
be complexed but not necessarily completely within the 
cavity or on a 1:1 host:guest basis. More complex host-guest 
relationships are known, for example 2:1 "sandwich-type" 
complexes. In such cases, other factors such as cation charge 
and type, ligand donor atom type, ligand substituents and 
solvent become important.[22]

Pearson's hard-soft acid-base (HSAB) principle[23] 
provides a useful starting point for donor atom selection 
when designing a host for a particular guest. The principle 
states that hard acids prefer to bind to hard bases and soft 
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acids prefer to bind to soft bases, where hard acids have small 
highly charged and nonpolarisable acceptor atoms and soft 
acids are larger and not so highly charged. Correspondingly 
hard bases have small, highly electronegative donor atoms 
and soft bases are larger and more polarisable.[24] The 
bonding between hard acids and hard bases is dominated 
by electrostatic interactions, whereas the bonding between 
soft acids and soft bases is primarily covalent in nature. 
Crown ethers utilizing ether oxygens as donor atoms, which 
are "hard base" species, coordinate well with the hard acid, 
alkali metal cations.

Solovev and Varnek reported the QSPR model of 
substructural molecular fragments based on splitting of 
a molecular graph into a limited number of topological 
fragments and calculation of their contributions to a given 
property, stability constants of complexes of crown ethers 
with alkali metal cations in methanol was calculated.[25] 
Svetlitski et al. developed QSPR models for the stability 
constants of complexes between 63 different organic ligands 
and 14 lanthanides.[26] In our previous molecular modeling 
works, we used the application of QSPR techniques in the 
development of a new, simplified approach to prediction 
of compounds properties with different techniques.[27-31] 
Recently, for the first time, we have established the QSPR 
models for stability constants of 58 complexes of 15C5 
crowns with potassium ion.[32] The aim of the present study, 
is the development of predictive QSPR model of stability 
constant for lithium complexes with hemispherands. This 
model enables to make reliable predictions of the stability 
constant for previously unknown complexes and to elucidate 
the structural factors determining the stability constants.  

Materials and Methods

Data Set

The chemical structures and experimental values for the 
stability constants of fifty nine sphere derivatives taken from the 
literature[33] are presented in Tables 1 and 4, respectively. The data 
set was split into a training set and a testing set randomly. The 
training set of 47 complexes was used to adjust the parameters of 
the models, and the test set of 10 complexes was used to evaluate 
its prediction ability. Since the temperature and solvent also affect 
the stability constants, we used only data obtained at standard 
temperature (25°C) and just in CDCl3 saturated with D2O.

Molecular Optimization and Descriptor Calculation

All calculations were run on a Pentium IV personal 
computer with windows XP as operating system. The CS 
ChemOffice 2005 molecular modeling software ver. 9, supplied by 
Cambridge Software Company, was employed for optimization of 
the structure of the molecules and calculation of descriptors. The 
molecular structures of data set were sketched using ChemDraw 
Ultra module of this software. The sketched structures were 
exported to Chem3D module in order to create their 3D structures. 
Each molecule was “cleaned up” and energy minimization was 
performed using Allinger’s MM2 force filed and further geometry 
optimization was done using semi-empirical quantum method 
Austin Method 1 (AM1)[34] using the Polack–Rabiere algorithm until 
the root mean square gradient was 0.01. More than 350 molecular 
descriptors is derived to properly characterize the chemical 
structure of the 56 macrocycles, involving variables of the type 

Constitutional, Topological, GETAWAY (GEometry, Topology and 
Atoms-Weighted AssemblY), WHIM (Weighted Holistic Invariant 
Molecular descriptors), 3D-MoRSE (3D-Molecular Representation 
of Structure based on Electron diffraction), Aromaticity Indices. 
These variables are calculated by means of the software Dragon 
version 3.0 available in the Web.[35]

Forward Stepwise Regression

The forward stepwise regression procedure[36] is an interesting 
approach both from the didactical point of view and for the 
simplicity of the algorithm that involves. It consists on a step by 
step addition of the best molecular descriptors to the model that 
lead to the smallest value of the standard deviation (S), until there 
is no-other variable outside the equation that satisfies the selection 
criterion. The definition of S employed in present analysis is as 
follows:
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with d being the number of descriptors of the model, N is the number 
of molecules of the training set, and resi stands for the residual of 
molecule i (difference between the experimental and predicted 
property for i). The forward stepwise regression technique requires 
much less linear regressions than a full search of optimal variables. 
According to minimal S the optimized number of descriptors was 
selected.

Results and Discussion

MLR Model

The multiple linear regression (MLR) was performed 
on the macrocycles of the training set shown in Table 4. The 
five descriptors values for 56 hemispherands are indicated in 
Table 3. A five parameter model was obtained for prediction 
of stability constant of macrocycle compounds. The equation 
with its usual statistical parameters is as follows;

y=–1.04×102(±11)+2.38×10-02(±1.16×10-02)T(N…O)+ 
+44(±5)LP1–1.9(±0.4)Mor32m-1.6(±0.3)Mor30v– 
–5.20×10-04(±1.31× 10-04)piPC07   (2)
n=45, S2=0.421, R2=0.953, F=161(at 95% level)

The results of the model are summarized in Table 2. 
The predicted values of logK by using regression model are 
represented in Table 4. In Table 2 and Equation 2, b and Sb are 
the nonstandardized coefficient of descriptors and standard 
error of coefficient, respectively, and bs is the standardized 
regression coefficient. The predicted and experimental logK 
and the residuals (experimental logK vs predicted logK), 
obtained by the BMLR modeling, are shown in Table 4.

The standardized regression coefficients reveal the 
significance of an individual descriptor presented in the 
regression model. Obviously, in Table 4, sum of topological 
distance N…O on the stability constant of the macrocycles is 
more significant than that of the other descriptors. The order 
of significance of the other descriptors is LP1> Mor32m > 
piPC07> Mor30v.

As there is more than one variable presented in the 
correlations, it is necessary to examine the stability of our 
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regression. Upon investigating the collinearity of variables 
in, we obtain the variance inflation factor (VIF) for each 
descriptor which is summarized in Table 2.

VIF=1/(1-Rxi
2)    (3)

where Rxi
2 is the multiple correlation of the equation when 

dependent variable is replaced with one independent variable 
xi. This indicator reflects the extent of the collinearity of the 
independent variables or descriptors in QSAR studies.

 As one can see, all the VIF values are less than 
3.0, indicating the stability of the equations constructed 
(according to statistics principle, a value of 1.0 is indicative 
of no correlation, while a value of under 10.0 is statistically 
satisfactory).

Validation of the Model

Validation is a crucial aspect of any QSAR/QSPR 
model to prove the predictability of the model obtained. 
Golbraikh and Tropsha[37] suggested that for a QSAR/
QSPR model to have a high predictive power the following 
conditions should be fulfilled: (i) a high cross-validated Q2 
value; (ii) correlation coefficient R between the predicted 
and observed activities/properties of compounds from an 
external test set close to 1; (iii) at least one (but better both) 
of the correlation coefficients for regression through the 
origin (predicted versus observed activities, or observed 
versus predicted activities) should be close to R2; (iv) at least 
one slope of the regression lines through the origin should 
be close to 1. In this paper, the cross-validated R2 (i.e. Q2) 
was assessed and the high value of Q2 can be regarded as 
the proof of the high predictive ability of the model. Q2 = 
[1−PRESS/SS], where PRESS is the predicted residual sum 
of squares of deleted data in the cross-validation, calculated 
as [predicted value-experimental value]2, and SS is the 
sum of squares of Y corrected for the mean, calculated 
as [experimented value−mean experimental value]2. To 
assess the robustness of the model we use many-leave-out 
and the result has good alignment with leave-one-out cross 
validation Q2, proves good statistical quality of the final 
model, Table 5. However, the high value of Q2 appears to 
be a necessary but not sufficient condition for the models 
to have a high predictive power. So an external set, i.e. 
test set, is necessary besides Q2. In all cases, the Q2, root 
mean square error of the calibration set (RMSEC), were 
calculated to assess the quality of the models. An external 
test set was chosen to verify the MLR model, and the root 
mean square error of prediction set (RMSEP) was also 
examined. Table 5 indicates the statistical parameters of 
the model.

Interpretation of Descriptors

As we discussed in introduction section, the process 
of cation-macrocycle association depends on several factors 
including shape and preorganization within the host molecule, 
the size-match of the host cavity to the guest, cation charge 
and type, donor atom charge and type, the nature of the 
solvent and etc. Here to eliminate the effect of temperature 
and solvent on the stability constants, we used only data at 

25 °C and just in CDCl3 saturated with D2O. 
The cavity size of hemispherands that used in this 

study is large (more than 4 Å),[38] but the ionic diameter of 
the lithium cation (1.20 Å) is smaller than the cavity of the 
macrocycles, so as might be expected, Li+ is waterionized 
and bound inside the cavity. The stoichiometry of the binding 
of Li+ (M) with macrocycles (L) studied in the present work 
is 1:1 (ML). The electron pairs of donor groups in these 
macrocycles can be preorganized to bind the smaller alkali 
metal cation such as Li+. So the flexibility of these compounds 
is very important for complexation process.[38] It is noted that 
the other parameter such as size of the macrocycle cavity, 
charge density of ions (i.e., coulombic interactions) as well 
as hydrophobic interaction play a major role in governing the 
occurrence and stability of the complexed species.

The descriptors involved in the QSPR model are: 
(i) T(N…O), sum of topological distance between N…O, 
(ii) LP1, Lovasz-Pelkin index (leading eigenvalue), (iii) 
Mor32m, 3D-MoRSE-signal 32/weigthed by atomic masses, 
(iv) Mor30v, 3D-MoRSE-signal 30/weigthed by atomic van 
der Waals volumes, (v) piPC07, Molecular path count of  
order 7.  

In this QSPR model according to the selected 
descriptors, complexation phenomenon is mainly related 
to: (i) topological (T(N…O), LP1, and piPC07), and (ii) 
3D-Morse descriptors (Mor32m and Mor30v).  As you can 
see in Table 2, the positive sign of regression coefficients of 
T(N…O) and LP1 in model show that with T(N…O) and LP1 
increasing the logK will be increased, and the negative sign 
of regression coefficients of Mor32m, Mor30v, and piPC07 
indicate that increasing theses descriptors  will decrease the 
extent of  logK.

The most significant descriptor involved in the model 
is “sum of topological distance between N…O”,[39] the 
topological indices is calculated by either the adjacency 
matrix or the topological distance matrix. The topological 
distance between two vertices is the number of edges in 
the shortest path between these. The molecule structures 
(Table 1) indicate that with increasing of nitrogen atom size 
the oxygen with double bond is increased and oxygen with 
double bond is harder than oxygen with single bond,[40] and, 
based on HSAB principle, it can strongly bind to lithium. The 
positive sign of this descriptor confirms our concluding, and 
with increasing of N…O the stability constant of macrocycle 
increases.

The second descriptor used in model is the largest 
eigenvalue of adjacency matrix A, it is among the most 
popular graph invariants and known as the Lovasz-Pelkin 
index, also called leading eigenvalue.[41] This eigenvalue 
has been suggested as an index of molecular branching, the 
smallest value corresponding to chain graphs and the highest 
to the most branched graphs. The alkyl groups are electron 
donating, thereby increasing the electron density and basicity 
of the adjacent donor atoms, these groups can increase the 
binding strength of macrocycles. Also when the number of 
alkoxy units increases, the cavity becomes smaller and more 
preorganized and binding constant increases for the small 
ions.[38]

The 3D-MoRSE descriptors[42,43] provide three-
dimensional information from the three-dimensional 
coordinates by using the same transform as in electron 
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Table 1. Chemical structures of 56 hemispherands.

No. Structure

1 R=CH3, X=CH2OCH2C6H5

2 R=CH3, X=H
3 R=C2H5, X=H
4 R=CH3, X=CH3

5 A=COC3H7, R1, R3=CH3, R2=H
6 A=COH, R1, R3=CH3, R2=H
7 A=COCH3, R1=C(O)CH3, R2=H, R3=CH3

8 A=COCH3, R1=NO2, R2=H, R3=CH3

9 A=CNO2, R1=C6H5, R2=H, R3=CH3 
10 A=CCO2CH3, R1, R3=CH3, R2=H
11 A=CNH2, R1, R3=CH3, R2=H 
12 A=CSOCH3, R1 =CH3, R2=H, R3=t-C4H9

13 A=CSO2CH3, R1 =CH3, R2=H, R3=t-C4H9

14

15 R=CH3, X=CH2OCH3

16 R=C2H5, X=H

17 R=H, X=H 

18 R=CH3

19

20

21 A=N, R=CH3

22 R1=CH3, R2=CH2C6H5

No. Structure
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23 R1, R2=H, R3=CH3

24 R1=H, R2=CH3,  R3=CH2C6H5

25 R1=CH2CHCH2, R2=CH3,R3=CH2C6H5

26 X,Y=H
27 X=OCH3,Y=CH3

28 X,Y=H
29 X=Br, Y=H
30 X=3,5-(t-C4H9)2-4-CH3-OC6H2, Y=H
31 X=9-Anthracenyle, Y=H

32 X=H, Y=t-C4H9

33 X=Br, Y=t-C4H9

34 X=3,5-(t-C4H9)2-4-CH3-OC6H2, 
Y=t-C4H9

35 X=3-HOC6H4, Y=H

36 R=CH3, X=CH2SO2CH2

37 R=CH3, X=CH2SCH2

38 R=CH3

39 R=C2H5

40 R=CH3

41 R=C2H5, X,Y=H

42 X=S
43 X=SO
44 X=SO2

45

46

No. Structure No. Structure

Table 1. (continued)
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47

48 R=CH3

49 R=H, X=CH2OCH2, Y=CH2CH2OCH2CH2

50 R=CH3, X=CH2OCH2, Y=CH2CH2OCH2CH2

51 R=C3H7, X=CH2OCH2, Y=CH2CH2OCH2CH2

52 R=C3H7, X=2,6-C5H3N

Table 1. (continued)

53 R=3,5-(CH3)2C6H3

54 R1=OCH3, R2=CH3, R3=H
55 R1= 3,5-(CH3)2C6H3, R2,R3=H

56 R=CH3, X=CH2CH2(OCH2CH2)4

No. Structure No. Structure

Table 2. The best MLR model results.

Variable Description of molecular descriptor b Sb bs VIF
Intercept – -1.04⋅102 11 – –
T(N…O) Sum of topological distance between N…O 2.38⋅10-2 1.16⋅10-2 0.92 2.061
LP1 Lovasz-Pelkin index (leading eigenvalue)132 44 5 0.45 2.19
Mor32m 3D-MoRSE-signal 32/weigthed by atomic masses -1.9 0.4 -0.33 1.95

Mor30v 3D-MoRSE-signal 30/weigthed by atomic van der 
Waals volumes -1.6 0.3 -0.18 1.33

piPC07 Molecular path count of order 7    345 -5.20⋅10-4 1.31⋅10-4 -0.20 2.62

diffraction (which uses it to prepare theoretical scattering 
curves). Various atomic properties can be taken into account 
giving high flexibility to this representation of a molecule. 
The descriptor equation is based on the general molecular 
transform and is given by:

where I(s) is the scattered electron intensity, A is an atomic 
property chosen as atomic number and rij is the interatomic 
distances between ith and jth atoms. The values of this 
function were calculated at 32 evenly distributed values of s 
in the range of 0-31.0 Å-1 from the three-dimensional atomic 
coordinates of a molecule as obtained by the 3D structure 
generator CORINA.[44] 

Mor32m and Mor30v are a representation of the three-
dimensional structure of organic molecules that can be 
probably indicate cavity size and shape of molecule that 
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Table 3. The descriptors values for 56 hemispherands.

No. T(N…O) LP1 Mor32m Mor30v piPC07
1 0 2.504 -0.891 0.584 2553.930
2 0 2.505 -0.990 0.561 2594.274
3 0 2.509 -0.782 0.580 2718.774
4 0 2.506 -0.684 0.636 2651.086
5 0 2.512 -0.341 0.395 1912.750
6 0 2.503 -0.495 0.409 1776.063
7 0 2.518 -0.670 0.362 2263.750
8 44 2.518 -0.114 0.160 2081.500
9 34 2.535 -0.139 0.302 2993.594
10 0 2.525 -0.698 0.320 2207.641
11 34 2.503 -0.52 0.428 1776.063
12 0 2.541 -0.198 0.392 2565.391
13 0 2.541 -0.275 0.560 2595.766
14 48 2.490 -0.169 0.164 546.875
15 0 2.504 -0.488 0.530 2426.555
16 0 2.507 -0.842 0.711 2511.055
17 88 2.468 -0.340 -0.143 846.469
18 0 2.503 -0.705 0.656 2413.555
19 0 2.506 -0.832 0.518 3218.836
20 38 2.531 -0.464 0.036 3730.922
21 33 2.484 -0.677 0.391 1678.594
22 136 2.528 -0.553 0.623 2746.625
23 140 2.516 -0.246 0.562 2176.906
24 140 2.538 -0.211 0.434 2629.813
25 140 2.538 -0.785 0.507 2699.375
26 92 2.464 -0.107 0.227 849.000
27 132 2.473 0.151 0.284 928.500
28 164 2.521 -0.072 0.173 1019.250
29 164 2.522 0.003 0.322 1043.438
30 228 2.535 0.071 0.727 2134.688
31 164 2.550 0.114 0.843 3400.313
32 164 2.522 0.034 0.267 1150.313
33 164 2.524 -0.208 0.334 1174.500
34 228 2.545 -0.091 1.130 2402.438
35 222 2.525 0.027 0.202 1623.375
36 0 2.524 -0.921 0.829 4184.977
37 0 2.521 -0.755 0.520 4022.977
38 0 2.503 -0.577 0.665 2388.555
39 0 2.507 -0.838 0.484 2513.055
40 40 2.503 -0.740 0.473 2512.805
41 0 2.507 -1.189 0.651 2542.055
42 0 2.503 -0.773 0.655 2388.555
43 0 2.503 -0.468 0.366 2400.555
44 0 2.503 -0.789 0.538 2412.555
45 0 2.510 -0.276 0.487 1851.625
46 96 2.463 0.017 0.463 845.625
47 0 2.517 -1.213 0.667 4105.008
48 0 2.516 -0.808 0.624 3725.250
49 0 2.506 -0.694 0.353 1894.313
50 0 2.513 -0.561 0.314 1966.875
51 0 2.515 -0.693 0.406 2031.000
52 40 2.516 -0.670 0.525 2155.250
53 156 2.518 -0.623 0.390 1702.313
54 196 2.516 -0.03 0.365 1122.000
55 156 2.518 -0.311 0.351 1702.313
56 0 2.512 -0.897 0.720 1883.000
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are important for stability constant of macrocyle-metal 
complexes. As we know the size of lithium is smaller than 
the cavity size of macrocycles thereby with increasing the 
size of cavity the interaction between donors and lithium ion 
decreases, as well as the stability constant.

The molecular path count is the total number of length 
paths m in the graph and denoted by mP (m = 0, 1, …, L), where 
L is the length of the longest path in the graph. The molecular 
path count may be obtained by the following equation:

Table 4. Experimental and predicted stability constants of spheres complexes for Li+ in CDCl3 saturated with D2O at 25 °C for 
train and test sets.

No. Exp. logKLi+
a Pred. logKLi+

b RE (%) c No. Exp. logKLi+
a Pred. logKLi+ 

b RE (%) c

1 4.61 4.65 -0.87 29 9.59 8.89 7.30
2d 5.23 4.89 6.50 30d 9.40 9.65 -2.66
3 5.2 4.59 11.73 31 7.91 7.87 0.51
4 4.26 4.22 0.94 32 9.23 8.87 3.90
5 5.04 4.61 8.53 33 9.40 9.28 1.28
6 4.78 4.55 4.81 34 9.38 9.62 -2.56
7 5.08 5.36 -5.51 35d 8.95 10.25 -14.53
8 5.11 5.79 -13.31 36d 4.11 4.35 -5.84
9 5.2 5.65 -8.65 37d 4.40 4.48 -1.82

10 5.28 5.81 -10.04 38 4.18 3.98 4.78
11 5.2 5.38 -3.46 39 4.74 4.86 -2.53
12 5.64 5.29 6.21 40 5.34 5.47 -2.43
13 4.91 5.15 -4.89 41 4.76 5.23 -9.87
14 4.91 5.55 -13.03 42 4.45 4.36 2.02
15 4.23 4.05 4.26 43 4.53 4.24 6.40
16 4.08 4.51 -10.54 44d 4.04 4.56 -12.87
17 6.23 6.18 0.80 45 4.93 4.29 12.98
18 4.38 4.22 3.65 46 4.40 4.53 -2.95
19 4.85 4.39 9.48 47d 4.40 4.88 -10.91
20 6.28 6.21 1.11 48d 4.54 4.35 4.19
21 4.83 4.92 -1.86 49 4.96 5.08 -2.42
22 8.11 8.16 -0.62 50 5.33 5.16 3.19
23d 8.79 7.55 14.11 51 5.51 5.32 3.45
24 7.84 8.42 -7.40 52 6.23 6.02 3.37
25 9.23 9.33 -1.08 53 9.96 9.24 7.23
26d 5.58 5.08 8.96 54 9.08 9.34 -2.86
27 5.51 5.82 -5.63 55 8.86 8.72 1.58
28d 9.84 9.24 6.10 56 4.74 5.14 -8.44

a Experimental logKLi+.
b Predicted logKLi+.
c Percent of relative error of prediction.
d Test set.

Table 5. Statistical results of comparing regression models.

Model RMSEC RMSEP RMSECV Q2 2
calR 2

testR

MLR 0.35 0.65 0.40
0.953a 
0.931b

0.930c
0.960 0.920

aLOO, bLeave-5-out, cLeave-10-out

piPC07 increasing leads to wide cavity of macrocycles, 
lowing the attraction with cation, weak complexation and 
the decrease the stability constants (logK). 

Conclusions

We have demonstrated that the theoretical molecular 
descriptors can been successfully applied in the development 
of predictive QSPR models for the stability constants of 56 
lithium macrocycle compounds at standard temperature 
(25°C) and just in CDCl3 saturated with D2O. A five 
descriptors equation was developed with these statistical  
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parameters: R2
cal = 0.960, Q2 = 0.953, R2

test = 0.920, RMSEC 
= 0.35, RMSECV=0.40 RMSEP =0.65. The strategy applied 
in this study is in some aspects different from previous 
works on QSPR modeling of macrocycles.[32] A set of 56 
hemispherands with very diverse chemical structures was 
used, and the initial number of molecular descriptors was 
only five. From the selected parameters, it can be seen that the 
complexation characteristic of the macrocycle compounds 
are mainly determined by topological and 3D-morse 
descriptors. At last, this study can improve the understanding 
for complexation from the molecular level and then would 
be of considerable use in prediction of stability constant of 
hemispherand-metal complexes.

References

1. Plenio H., Diodane R. J. Am. Chem. Soc. 1996, 118,  356-
367.

2.  Zhang X.X., Bordunov A.V., Bradshaw J.S., Dalley N.K., Kou 
X., Izatt R.M. J. Am. Chem. Soc. 1995, 117, 11507-11511.

3. Pedersen C.J. Science 1988, 241, 536-540.
4. Cram D.J. Science 1983, 219, 1177-1183.
5. Lehn J.M. Acc. Chem. Res. 1978, 11,  49-57.
6. Dougherty D.A., Stauffer D.A. Science (Washington, D.C.) 

1990, 250, 1558-1560.
7. Pedersen C.J. In: Synthetic Multidentate Macrocyclic 

Compounds (Izatt R.M. and Christensen J.J., Eds.) New York: 
Academic Press, 1978. 

8. Lehn J.M. Struct. Bond, 1973, 76, 1-69.
9. Pressman B.C. Annu. Rev. Biochem. 1976, 45, 501-530.
10. Simon W., Morf W.E., Meier P.Ch. Struct. Bond. 1973, 76, 

113-160.
11. Lindenbaum S., Rytting J.H., Stemson L.A. In: Progress in 

Macrocyclic Chemistry (Izatt R.M. and Christensen J.J., Eds.) 
New York: Wiley & Sons, 1979.

12. Dalley N.K. In: Synthetic Multidentate Macrocyclic 
Compounds (Izatt R.M. and Christensen J.J., Eds.)

13. Goldberg I. Acta Crystallogr., Sect. B. 1975, 31, 754-762.
14. Cram D.J. Angew. Chem., Int. Ed. Engl. 1988, 27, 1009-1020.
15. Cram D.J., Kaneda T., Helgeson R.C., Brown S.B., Knobler 

C.B., Maverick E., Rueblood K.N.T. J. Am. Chem. Soc. 1985, 
107, 3645-3657.

16. Tucker J.A., Knobler C.B., Goldberg I., Cram D.J. J. Org. 
Chem. 1989, 54, 5460-5482.

17. Lein G.M., Cram D.J. J. Am. Chem. Soc. 1985, 107, 448-455.
18. Doxsee K.M., Feigel M., Stewart K.D., Canary J.W., Knobler 

C.B., Cram D.J. J. Am. Chem. Soc. 1987, 109 , 3098-3107.

19. Cram D.J., Ho S.P. J. Am. Chem. Soc. 1986, 108, 2998-3005.
20. Pedersen C.J. Fed. Proc., Fed. Am. Soc. Exp. Biol. 1968, 27, 

1305-1309.
21. Izatt R.M., Pawlak K., Bradshaw J.S. Chem. Rev. 1995, 95, 

2529-2586.
22. Lamb J.D., Izatt R.M., Christensen J.J. In: Progress in 

Macrocyclic Chemistry (Izatt R.M. and Christensen  J.J., 
Eds.). New York: Wiley, 1981.

23. Pearson R.G. J. Am. Chem. Soc. 1963, 85, 3533-3539.
24. Lowry T.H., Richardson K.S. Mechanism and Theory in 

Organic Chemistry. 3d ed.,  New York: Harper & Row, 1987.
25. Solovev V.P., Varnek A.A. Russ. Chem. Bull. 2004, 53, 1434-

1445.
26. Svetlitski R., Lomaka A., Karelso M.N. Sep. Sci. Technol. 

2006, 41, 197-216.
27. Ghasemi J., Ahmadi Sh. Annali di Chimica 2007, 97 ,69-83.
28. Ghasemi J., Saaidpour S., Brown S.D. J. Mol.  Struct. 2007, 

805, 27-32.
29. Ghasemi J., Saaidpour S. Chem. Pharm. Bull. 2007, 55, 669-

674.
30. Ghasemi J., Shahmirani S., Farahani E.V. Annali di Chimica 

2006, 96, 327-337. 
31. Ghasemi J., Asadpour S., Abdolmaleki A. Anal. Chim. Acta. 

2007, 588, 200-206.
32. Ghasemi J., Saaidpour S. J. Inclusion Phenom. Macrocyclic 

Chem. 2008, 60, 339-351.
33. Izatt R.M., Pawlak K., Bradshaw J.S. Chem. Rev. 1991, 91, 

1721-2085.
34. Dewar M.J.S., Zoebisch E.G., Healy E.F., Stewart J.J.P. J. Am. 

Chem. Soc. 1985, 107, 3902-3909.
35. DRAGON, Web 3.0 available from <http://www.disat.unimib.

it/chm>.
36. Draper N.R., Smith H. Applied Regression Analysis. New 

York: John Wiley & Sons, 1981.
37. Golbraikh A., Tropsha A. J. Mol. Graphics Modell. 2002, 20, 

269-276.
38. Elroby S.A.K., Lee K.H., Cho S.J., Hinchliffe A. Can. J. 

Chem. 2006, 84, 1045-1049.
39. Todeschini R., Consonni V. Handbook of Molecular 

Descriptors. New York: John Wiley & Sons, 2000.
40. Sanders J.K.M., Williams D.H. J. Am. Chem. Soc. 1971, 93, 

641-645.
41. Lovasz L., Pelkin J. Periodica Mathematica Hungarica 1973, 

3, 175-182.
42. Schuur J.H., Selzer P., Gasteiger J. J. Chem. Inf. Comput. Sci. 

1996, 36, 334-344.
43. Gasteiger J., Sasowski J., Selzer P., Steinhauer L., Steinhauer 

V. J. Chem. Inf. Comput. Sci. 1996, 36, 1030-1037.
44. Sadowski J., Gasteiger J. Chem. Rev. 1993, 93, 2567-2581.

Received 06.11.2010
Accepted 29.11.2010


