Complex Formation and Photochemical Properties of the Crown– Containing Mono– and Bis(styryl)bipyridine Derivatives with Transition Metal Cations

Nikolay E. Shepel,^a Olga A. Fedorova,^a Elena N. Gulakova,^a Gedeminas Jonusauskas,^b and Yuriy V. Fedorov^{a@}

^aA.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia ^bCentre de Physique Moléculaire Optique et Hertzienne, U.M.R. 5798 UNIVERSITÉ BORDEAUX 1 – CNRS, 351, Cours de la Libération – 33405 TALENCE CEDEX, France [@]Corresponding author E-mail: fedorov@ineos.ac.ru

Complex formation of 15-crown-5 ether containing mono- and bis(styryl)bipyridine with transition metal perchlorates was studied. The complex stoichiometry, complex structure and stability constants were determined by electronic spectroscopy. The influence of metal ions on occurrence of E,Z-isomerization was analyzed; the optical characteristics of two isomers were calculated from the photolysis data.

Keywords: 15-Crown-5 ether, crown-containing styrylbipyridine, *E*,*Z*-photoisomerization, complex formation, zinc perchlorate, cadmium perchlorate, mercury perchlorate, cobalt perchlorate, absorption spectroscopy.

Комплексообразование с катионами переходных металлов и фотохимические свойства краунсодержащих моно- и бис(стирил) производных бипиридина

Н.Э. Шепель,^а О.А. Федорова,^а Е.Н. Гулакова,^а Г. Йонушаускас,^ь Ю.В. Фёдоров^{а@}

^aУчреждение Российской академии наук Институт элементоорганических соединений им. А.Н. Несмеянова РАН, 119991 Москва, Россия ^bЦентр оптической и электромагнитной молекулярной физики Университета Бордо 1, UMR CNRS 5798, 33405 Таланс, Франция

"E-mail: fedorov@ineos.ac.ru"

Изучено комплексообразование краунсодержащих моно- и бис-(стирил)бипиридинов с перхлоратами переходных и тяжёлых металлов (Zn²⁺, Co²⁺, Cd²⁺, Fe²⁺, Hg²⁺), способных к координации с атомами азота гетероциклического остатка и краун-эфирным фрагментом. Методами электронной спектроскопии определено место координации катиона, стехиометрия образующихся комплексов и рассчитаны константы их устойчивости. Исследовано влияние комплексообразования на протекание E,Z-фотоизомеризации лигандов, определены оптические характеристики Z-изомеров.

Ключевые слова: 15-Краун-5-эфир, стирилбипиридин, *E*,*Z*–фотоизомеризация, комплексообразование, перхлорат цинка, перхлорат кадмия, перхлорат ртути, перхлорат кобальта, электронная спектроскопия.

Введение

Для создания супрамолекулярных ансамблей широко используются лиганды, синтезированные на основе производных стирилпиридинов.^[1,2] В основе построения таких супрамолекулярных систем лежит способность атома азота гетероциклического соединения образовывать прочные координационные связи с катионами металлов.^[3-6] Предполагается, что подобные лиганды и супрамолекулярные ансамбли на их основе могут применяться для создания функциональных систем в мониторинге окружающей среды, медицине и химическом анализе, материалов для фотоники, оптоэлектроники и электрохимического анализа.^[7-13]

Введение ионофорного фрагмента в состав фотохромной молекулы позволяет получить фотохромные краун-соединения нового класса.^[14-16] При связывании катионов металлов ионофорным фрагментом фотохромной молекулы происходит существенное изменение оптических характеристик молекулы, что позволяет использовать подобные краун-соеднинения в качестве оптических сенсоров на катионы металлов. С другой стороны, изменения в структуре подобного лиганда в результате фототрансформации фотохромной части молекулы могут оказать существенное влияние на комплексообразующие свойства системы.

Экспериментальная часть

Растворы перхлоратов металлов приготавливали в ацетонитриле (сорт 1, ос.ч.; УФ поглощение на 200 нм составляет 0.020 о. е./см; содержание воды не более 0.03%, КРИОХРОМ, Россия).

Кристаллогидраты $Hg(ClO_4)_2$, $Zn(ClO_4)_2$, $Cd(ClO_4)_2$, использовали без высушивания; концентрацию полученных растворов уточняли титрованием трилоном-Б с индикатором метиленовым оранжевым.

Моногидрат Fe(ClO₄)₂ "Sigma", США, использовали без дополнительной очистки.

Раствор $HClO_4$ в MeCN готовился из концентрированной водной хлорной кислоты (C = 9.84 моль/л), концентрацию уточняли титрованием NaOH в автоматическом титраторе "Аквилон" с комбинированным pH электродом.

Приготовление растворов лигандов и все исследования проводили при красном свете.

Электронные спектры поглощения и флуоресценции лигандов и их комплексов записывали в кварцевых кюветах с длиной оптического пути 10 мм при 21°С, используя ацетонитрил в качестве растворителя. Спектры поглощения регистрировали на спектрофотометре Specord-M40 (Carl Zeiss JENA, DDR), сопряженном с компьютером. Управление спектрофотометром, сбор данных и простейшую математическую обработку спектров проводили с помощью стандартной программы "SPECORD" (версия 2.0, Эталон).

Спектры флуоресценции записывали на спектрофлуориметре «Shimadzu RF-5000».

Квантовые выходы флуоресценции

Квантовые выходы флуоресценции свободных лигандов и их комплексов определены при 20±1°С в насыщенных воздухом ацетонитрильных растворах по отношению к сульфату хинина^[17] в 0.5 М H₂SO₄ в качестве стандарта $\phi_{\phi,a}$ =0.55±0.03. Флуоресценция регистрировалась под прямым углом к возбуждающему пучку света.

Для расчёта квантовых выходов флуоресценции использовалась формула:^[18-20]

$$\varphi_{o\delta pasey} = \frac{S_{o\delta pasey}}{S_{cmandapm}} \times \frac{\varphi_{cmand.} (1 - 10^{-D_{cmand.}(\lambda_{oord.})})}{(1 - 10^{-D_{o\delta pas.}(\lambda_{oord.})})} \times \frac{n_{o\delta pas.}^2}{n_{cmand.}^2}$$

где S – интегральная интенсивность флуоресценции, D – оптическая плотность на длине волны возбуждения, n – показатель преломления растворителя, в котором проводились измерения, φ - квантовый выход флуоресценции.

Спектры ЯМР

¹Н, COSY и NOESY ЯМР-спектры зарегистрированы на спектрометре Bruker DRX-600 с рабочей частотой 600.22 МГц

для протонов, внутренний стандарт – ТМС. Растворитель – CD₃CN. Химические сдвиги измеряли с точностью до 0.01 м. д., а КССВ с точностью до 0.1 Гц.

Масс-спектрометрия

Масс-спектры в условиях электрораспыления при атмосферном давлении (ИЭР) регистрировали в режиме полного сканирования масс положительных ионов на тандемном динамическом масс-спектрометре Finnigan LCQ Advantage (США), оборудованном масс-анализатором с октапольной ионной ловушкой, насосом MS Surveyor, автосамплером Surveyor, генератором азота Schmidlin-Lab (Германия) и системой сбора и обработки данных с использованием программы X Calibur версии 1.3 фирмы Finnigan. Температура трансферного капилляра 150°С, напряжение поля между иглой и противоэлектродом 4.5 кВ. Образцы с концентрацией 10⁻⁴ моль/л в растворе ацетонитрила (если не указано иное) вводили в ионный источник с прямого ввода со скоростью потока 50 мкл/мин через инжектор Reodyne с петлей на 20 мкл.

Расчет констант устойчивости комплексов

Константы устойчивости комплексов лигандов 1 и 2 с катионами металлов были определены с использованием метода спектрофотометрического титрования при 20±1°С. Для спектрофотометрического титрования были приготовлены следующие растворы в ацетонитриле: лиганд С_{лиг}= 4.3·10⁻⁵ моль:л⁻¹, перхлорат соответствующего метал-_мⁿ⁺ = 1·10⁻³ и 1·10⁻¹ моль·л⁻¹. Титрование раствора лиганда ла С. раствором перхлората металла проводили следующим способом: известный объём раствора лиганда в ацетонитриле наливали в кварцевую кювету и записывали спектр поглощения. Затем в кювету порциями известного объема добавляли раствор с известной общей концентрацией перхлората металла (C_мⁿ⁺). После каждого добавления записывали спектры поглощения растворов. Титрование прекращали, когда при дальнейшем добавлении соли металла спектры поглощения растворов практически не изменялись, что свидетельствовало о полном комплексообразовании, либо изменения объяснялись лишь разбавлением, что сопровождалось равномерным уменьшением оптической плотности по всему спектру поглощения. Обработку результатов спектрофотометрического титрования и расчет констант устойчивости комплексов проводили с помощью программы «SPECFIT/32", использующей нелинейную оптимизацию методом наименьших квадратов по алгоритму Левенберга-Марквардта.

Оптимизация структур молекул

Оптимизация структур молекул проводилась в программе МОРАС 2009^[21] методом РМ6, со следующим набором параметров: NOSYM PM6 PRECISE CHARGE=0 PRNT=1 CYCLES=10000 LARGE=-1 DUMP=900 BONDS GNORM=0.100.

Обсуждение результатов

Строение лигандов. В настоящей работе были изучены 15-краун-5-содержащие 4-метил-4'-стирил-2,2'-бипиридин *E*-1 и 4,4'-бис(стирил)-2,2'-бипиридин *E*,*E*-2, молекулярные формулы которых представлены на Схеме 1.

Схема 1.

Данные соединения обладают двумя особенностями: краун-эфирный фрагмент и атомы азота гетероциклических фрагментов являются центрами координации катионов металлов различной природы и протона, а двойная C=C связь является антенной, способной улавливать кванты солнечного света. Наличие нескольких центров связывания катионов в молекулах *E*,*E*-2 и *E*-1 делает их политопными лигандами, перспективными для создания на их основе разнообразных молекулярных ансамблей.

Производные бипиридина 1 и 2 относятся к классу хромо-ионофоров и способны существенно изменять свои фотофизические и фотохимические свойства при комплексообразовании. Хотя примеры краунсодержащих фотохромных соединений известны в литературе,^[22-25] закономерности образования супрамолекулярных ансамблей с использованием нескольких центров координации не выявлены, а также не исследовано влияние супрамолекулярной организации на фотофизические и фотохимические свойства систем, не определены перспективы их практического применения. Строение лигандов *E*-**1** и *E*,*E*-**2**, полученных по известным методикам,^[27] установлено методом ¹Н ЯМР спектроскопии.^[28]

В растворе 1 и 2 существуют в виде *Е*-изомеров согласно константам спин-спинового взаимодействия олефиновых протонов равных 16.2 Гц (Рисунок 2).

Отсутствие в NOESY спектрах кросс-пиков между H-3 и H-3' позволяет предположить, что фрагменты пиридина располагаются в *анти*-положении по отношению друг к другу. Этот факт находится в полном согласии с данными по оптимизации структуры соединения, проведенной квантово-химическим методом (Рисунок 1).

Рисунок 3. Спектры поглощения *E*-1 (*C*₁=3.0·10⁻⁵ моль·л⁻¹) – (*1*) и *E*,*E*-2 (*C*₂=1.5·10⁻⁵) – (*2*) в MeCN, 25°С.

Электронные спектры поглощения *E*-1 и *E,E*-2 в MeCN характеризуются наличием интенсивных длинноволновых полос поглощения (ДПП) с максимумами при 339 нм ($\varepsilon_{\text{макс}}$ =28700 л·моль⁻¹·см⁻¹) (Рисунок 3, кривая 1) и 345 нм ($\varepsilon_{\text{макс}}$ =56500 л·моль⁻¹·см⁻¹) (Рисунок 3, кривая 2)

Рисунок 1. Оптимизированная структура молекул Е-1 (а) и Е,Е-2 (б), РМб.

Рисунок 2. ¹Н ЯМР спектр *E*-**1** в (CD₃)₂SO (25°C).

соответственно. ДПП E,E-2 сдвинута батохромно на 6 нм по отношению к ДПП моностирилзамещенного аналога E-1, вероятно, из-за электронного влияния друг на друга двух хромофорных частей молекулы. Коэффициент молярного поглощения E,E-2 близок к удвоенному коэффициенту молярного поглощения для E-1.

Комплексообразование

Добавление к растворам *E*-**1** и *E*,*E*-**2** ($C = 3.0 \cdot 10^{-5}$ М, MeCN) перхлоратов Zn^{II}, Cd^{II}, Co^{II}, Fe^{II}, Hg^{II} или HClO₄ приводит к исчезновению ДПП лигандов и появлению новой ДПП, смещенной в красную область спектра, что свидетельствует о комплексообразовании катионов по бипиридиновому фрагменту молекул. Батохромный сдвиг ДПП связан с тем, что появление положительного заряда на бипиридиновом фрагменте облегчает внутримолекулярный перенос заряда от краун-эфирного фрагмента на гетероциклическое ядро лигандов при электронном возбуждении. Взаимодействие Е-1 и Е,Е-2 с перхлоратами Zn^{II}, Co^{II}, Cd^{II} и Hg^{II} не ограничивается батохромным сдвигом ДПП лиганда и сопровождается более сложными спектральными изменениями, которые проявляются при высоких концентрациях катионов и могут быть связаны с координацией катионов по краунэфирным фрагментам.

Определение констант устойчивости комплексов *E*-1 и *E,E*-2 с хлорной кислотой и катионами металлов проводилось по данным спектрофотометрического титрования с использованием расчетной программы «SpecFit32".

При расчете констант устойчивости учитывали возможность образования комплексов согласно следующим схемам:

			$HClO_4$	
L	+	$\mathrm{H}^{\scriptscriptstyle +}$	$\xrightarrow{K_{11}}_{K}$	[LH]⁺,
L	+	$2\mathrm{H}^{+}$	$\xrightarrow{K_{12}}$	[LH ₂] ²⁺ ,
			Hg ²⁺ , Fe ²⁺	F
L	+	M^{n+}	$\xrightarrow{K_{11}}$	[LM] ⁿ⁺ ,
L	+	$2M^{n\scriptscriptstyle +}$	$\xrightarrow{K_{12}}$	$[LM_2]^{2n+}$,
2L	+	M^{n+}	$\stackrel{K_{21}}{\longleftarrow}$	$[L_2M]^{n+}$

где L = E-**1** или E, E-**2**, Mⁿ⁺ – катион металла.

При взаимодействии молекул *E*-1 и *E*,*E*-2 с хлорной кислотой образуются моно- и бипротонированные формы соответствующих молекул (Схема 2).

Рисунок 4а. Электронные спектры поглощения *E*-1 при различной концентрации HClO₄ ($C_{H^+} = 0$ (*I*) – 3.5·10⁻⁵ (*II*), моль·л⁻¹). Концентрация лиганда постоянна $C_1 = 3.0 \cdot 10^{-5}$ М.

Рисунок 46. Электронные спектры поглощения *E*-1 при различной концентрации HClO_4 (C_{H^+} = 0 (*I*), 3.5·10⁻⁵ (*2*) – 8.1·10⁻³ (*I3*), моль·л⁻¹). Концентрация лиганда постоянна C_1 = 3.0·10⁻⁵ M.

Как и следовало ожидать, присоединение первого протона гораздо эффективнее, чем присоединение второго (логарифмы ступенчатых констант комплексообразования для *E*-1 равны 7.7 и 2.8, соответственно). Электронные спектры поглощения *E*-1 при различной концентрации HClO₄ приведены на Рисунках 4а,6.

Вероятно, во взаимодействии с первым протоном принимают участие оба атома азота бипиридинового фрагмента, в то время как присоединению второго протона препятствуют положительный заряд молекулы и необходимость разворота фрагментов пиридина таким образом, чтобы атомы азота были пространственно удалены друг от друга.

Рисунок 4в. Расчётные спектры поглощения *E*-1 (*1*) и его протонированных форм $[1 \cdot (H^+)] (2)$ и $[1 \cdot (H^+)_2] (3)$, вычисленные из данных спектрофотометрического титрования.

Таблица 1. Константы комплексообразования *E*-1 и *E*,*E*-2 с катионами Hg^{2+} , Fe^{2+} и константы протонирования.

Ком- плекс	Радиус катиона, Å*	Ионная сила, моль·л ⁻¹	LogK _{катион/лиганд}		
			LogK ₁₂	Log <i>K</i> ₁₁	$Log K_{21}$
$1 + Hg^{2+}$	1.10	$0\div7{\cdot}10^{-3}$	>16		
$2 + Hg^{2+}$	1.10	$0\div 2{\cdot}10^{\text{-3}}$	>16		
$1 + Fe^{2+}$	0.75	$0\div 3{\cdot}10^{{\scriptscriptstyle-}3}$	13.7±0.2	-	-
$2 + Fe^{2+}$	0.75	$0 \div 3 \cdot 10^{-4}$	14.9±0.2	-	-
$1+H^+$	_	$0 \div 4 \cdot 10^{-2}$	-	7.7±0.2	10.47 ± 0.04
$2+H^+$	_	$0\div 2{\cdot}10^{\text{-3}}$	-	7.1±0.2	11.01 ± 0.02
* He Herrore ^[29]					

* – По Полингу.^[29]

Расчётные спектры поглощения Е-1 и его протонированных форм $[(E-1)\cdot(H^+)]$ и $[(E-1)\cdot(H^+)_2]$, вычисленные из данных спектрофотометрического титрования И найденных значений констант комплексообразования, приведены на Рисунке 4в. Значения констант устойчивости комплексов Е-1 и Е, Е-2 с ионами Hg²⁺ и Fe²⁺, а так же константы протонирования приведены в Таблице 1. Отметим, что максимальный батохромный сдвиг ДПП при протонировании Е-1 наблюдается для бипротонированного производного. бипиридил является Бипротонированный более сильным акцептором, чем монопротонированный, что облегчает электронный перенос от краун-эфирного фрагмента к протонированному бипиридилу при возбуждении.

Схема 3.

На основании данных спектрофотометрического титрования (Рисунки 5 и 6) установлено, что с катионами Hg²⁺ и Fe²⁺ лиганды *E*-**1** и *E*,*E*-**2** образуют комплексы стехиометрии 2:1, вероятный состав которых $[L_2 \cdot (Me^{2+})]$ (Схема 3).

Точное определение констант устойчивости комплексов с катионами Hg²⁺ из данных прямого спектрофотометрического титрования оказалось невозможным из-за их очень высоких значений.

Рассчитанные значения констант комплексообразования E-1 и E, E-2 с катионами Fe^{2+} приведены в Таблице 1. Взаимодействие лигандов E-1 и E, E-2 с перхлоратом Fe^{II} сопровождается батохромным сдвигом ДПП и появлением новой полосы поглощения в области 500-600 нм, обусловленной переходом с переносом заряда металл-лиганд, что характерно для комплексов двухвалентного железа с бипиридином или фенантролином.^[30,31]

Рисунок 5. Электронные спектры поглощения *E*-1 при различной концентрации перхлората ртути ($C_{\text{Hg}^{2+}}$ = от 0 (*I*) до 1.7·10⁻⁵ (*I5*), моль·л⁻¹). Концентрация лиганда постоянна C_1 = 3.1·10⁻⁵ M.

Рисунок 6. Электронные спектры поглощения *E*-1 при различной концентрации перхлората железа ($C_{\text{Fe}^{2+}}$ = от 0 (*I*) до 3.6·10⁻⁵ (*I*2), моль·л⁻¹). Концентрация лиганда постоянна C_1 = 2.8·10⁻⁵ M.

Анализ данных спектрофотометрического титрования растворов *E*-1 и *E,E*-2 в MeCN перхлоратами Zn^{II} (Рисунок 7), Co^{II} и Cd^{II}, полученных при концентрациях соли, не превышающих концентрацию лиганда, показал, что со всеми указанными катионами образуются прочные комплексы состава [L₃·(Mⁿ⁺)]. Вероятная структура таких комплексов типа «клетка» показана на Рисунке 8, а в Таблице 2 приведены рассчитанные значения констант устойчивости комплексов.

Рисунок 7. Электронные спектры поглощения *E*-1 при различной концентрации перхлората цинка ($C_{z_n^{2+}}$ = от 0 (*I*) до 1.4·10⁻⁵ (*8*), моль·л⁻¹). Концентрация лиганда постоянна C_1 = 3.0·10⁻⁵ M.

Complexes of Crown Ether Derivatives with Transition Metals

Рисунок 8. Структура комплекса-клетки E,E-2 с $Zn^{2+}(Cd^{2+}, Co^{2+})$ и дальнейшая координация дополнительных катионов по краун-эфирному фрагменту (слева), а также оптимизированная структура комплекса [$(E-1)_3\cdot(Zn^{2+})$], PM6 (справа).

Таблица 2. Константы комплексообразования *E*-1 и *E*,*E*-2 с катионами Zn²⁺, Cd²⁺, Co²⁺.

Комплекс	Радиус катиона, Å*	Ионная сила, моль·л ⁻¹	LogK _{Kamuon/лиганд}			
			$Log K_{13}$	LogK ₂₃	LogK ₃₃	$Log K_{34}$
1 +Zn ²⁺	0.74	$0 \div 7 \cdot 10^{-3}$	21.1±0.4	26.4±0.4	29.3±0.4	32.4±0.4
$2 + Zn^{2+}$	0.74	$0 \div 7 \cdot 10^{-3}$	22.7±0.6	28.1±0.2	31.2±0.2	_
$1 + Cd^{2+}$	0.97	$0 \div 1.2 \cdot 10^{-3}$	18.5±0.2	24.3±0.4	27.7±0.4	_
$2 + Cd^{2+}$	0.97	$0 \div 5 \cdot 10^{-3}$	20.1±0.4	26.0±0.5	27.6±0.6	_
1 Co ²⁺	0.72	$0 \div 4 \cdot 10^{-3}$	18.8±0.2	24.7±0.3	-	_
2 Co ²⁺	0.72	$0 \div 1.2 \cdot 10^{-2}$	20.2±0.1	25.7±0.2	27.7±0.2	_

* – По Полингу.^[29]

В случае лиганда *E*-1 состав образующихся комплексов был подтвержден данными масс-спектрометрии (метод ионизации распылением, ИР). При соотношении лиганд:цинк = 3:1 в смеси преимущественно присутствует комплекс [(*E*-1)₃·(Zn²⁺)] (Рисунок 9).

Рисунок 9. ИР-МАСС спектр раствора *E*-**1** в присутствии катиона Zn^{2+} ($C_1 = 3 \cdot 10^{-4}$ моль/л, $C_{Zn(ClO_4)_2} = 1 \cdot 10^{-4}$ моль/л, MeCN).

Для определения состава и устойчивости комплексов, образующихся при большом избытке $Zn(ClO_4)_2$ (Рисунок 10), $Cd(ClO_4)_2$ или $Co(ClO_4)_2$, использовали данные спектрофотометрического титрования при избытке солей и предварительно рассчитанные значения констант устойчивости комплексов [L_3 ·(M^{n+})].

Рисунок 10. Электронные спектры поглощения свободного *E*-1 (*I*), а так же E-1 в присутствии перхлората цинка ($C_{2n^{2+}}$ = от 1.38·10⁻⁵ (*2*) до 7.1·10⁻³ (*I3*), моль·л⁻¹). Концентрация лиганда постоянна C_1 = 3.0·10⁻⁵ M.

При этом учитывали возможность образования комплексов согласно следующим схемам:

3L	+	M^{n+}	$\succeq [L_3M_1]^{n_+},$
3L	+	$2M^{n+}$ \overleftarrow{K}_{32}	► $[L_3M_2]^{2n+}$,
3L	+	$3M^{n+}$ $\overline{\leftarrow}$	$\succeq [L_3 M_3]^{3n+},$
3L	+	$4M^{n+}$ $\overline{\checkmark}$	\succeq [L ₃ M ₄] ⁴ⁿ⁺

где L = *E*-**1** или *E*,*E*-**2**, M^{*n*+} = Zn²⁺, Co²⁺, Cd²⁺

Макрогетероциклы / Macroheterocycles 2010 3(4) 201-209

В результате было обнаружено образование комплексов $[L_3 \cdot M_2]^{4+}$ и $[L_3 \cdot M_3]^{6+}$, содержащих один или два катиона, координированных в полости краун-эфирного фрагмента. Нам не удалось обнаружить комплексы более чем с тремя катионами в краун-эфирах, вероятно из-за невысокой устойчивости таких комплексов.

Спектры флуоресценции

Спектры флуоресценции соединений *E*-1 и *E,E*-2 представляют собой широкие бесструктурные полосы с максимумами 447 и 455 нм, соответственно. Значения квантовых выходов флуоресценции приведены в Таблице 3.

Таблица 3. Спектральные характеристики *E*-1 и *E*,*E*-2 ($\lambda_{\text{вооб}}$ =300 нм) и их комплексов.

	ЭСП		Флуоресценция		
Соединение	λ _{макс} , ΗΜ	ε _{макс} ·10 ⁻⁴ , 1/(М·см)	λ _{макс} /нм (сдвиг)	φ – квант. выход флуоресценции	
1	339	2.90	447	0.066	
2	345	5.65	455	0.099	
$[1 \cdot (H^+)]$	407	2.10	580 (+133)	0.013	
$[2 \cdot (\mathrm{H}^{+})]$	410	2.81	584 (+129)	0.011	
$[1 \cdot (H^+)_2]$	427	2.34	575 (+128)	0.0068	
$[2 \cdot (H^{+})_{2}]$	410	3.99	584 (+129)	0.0042	
$[1_{3} \cdot (Zn^{2+})]$	376	2.75^{*}	563 (+116)	0.010	
$[2_{3} \cdot (Zn^{2+})]$	373	4.41^{*}	577 (+122)	0.0045	
$[1_{3} \cdot (Zn^{2+})_{4}]$	351	2.63*	485 (+38)	0.082	
$[2_{3} \cdot (Zn^{2+})_{4}]$	350	3.86*	505 (+50)	0.026	
$[1_{3} \cdot (Cd^{2+})]$	371	2.65^{*}	548 (+101)	0.014**	
$[2_{3} \cdot (Cd^{2+})]$	372	4.14^{*}	560 (+105)	0.005**	
$[1_{2} \cdot (\mathrm{Hg}^{2+})]$	385	2.73^{*}	_	0^{**}	
$[2_{2} \cdot (Hg^{2+})]$	387	4.39*	_	0^{**}	
$[1_{2} \cdot (Fe^{2+})]$	377	2.79^{*}	_	-	
-''-	552	0.88^{*}	_	-	
$[2_{2} \cdot (Fe^{2+})]$	378	4.02^{*}	_	_	
''	572	1.26^{*}	_	_	

*- Значение экстинкции, деленное на стехиометрический коэффициент лиганда в комплексе.

**-λ_{возб}=313 нм.

В присутствии ионов металлов (Zn²⁺, Cd²⁺, Hg²⁺) и HClO,, способных к координации по центральной гетероциклической части молекул Е-1 и Е,Е-2, наблюдается тушение флуоресценции (см. например, флуоресценция комплекса $[(E-1)_3(Zn^{2+})]$ на Рисунке 11, в Таблице 3). Основными процессами безызлучательной релаксации возбужденного состояния рассматриваемых молекул могут быть: а) Е, Z-фотоизомеризация, б) образование «скрученного состояния» (ТІСТ).^[32,33] При координации протона или катиона металла по гетероциклической части возрастает дипольный момент молекулы, что, как известно из исследований аналогичных систем, [34] ведет к преобладанию процесса б) и уменьшению квантового выхода флуоресценции. Для таких катионов как Hg²⁺ и Fe²⁺ также возможно предположить перенос заряда с бензокраунэфирной части на центральный катион металла (MLCT) при электронном возбуждении. Протекание такого процесса приводит к полному тушению флуоресценции.

Рисунок 11. Спектры флуоресценции *E*-1 (*1*, $C_1 = 8 \cdot 10^{-6}$ моль·л⁻¹) и его комплексов с Zn²⁺ состава [(*E*-1)₃·(Zn²⁺)] (2), [(*E*-1)₃·(Zn²⁺)₄] (3) ($\lambda_{\text{возб.}} = 300$ нм).

Следует отметить, что в случае катионов цинка, способных к координации как по центральной гетероциклической части, так и по краун-эфирным фрагментам, интенсивность флуоресценции восстанавливается при больших избытках соли цинка. Наиболее ярко это проявляется для лиганда E-1, содержащего только один краунэфирный фрагмент в молекуле. Образование комплекса $[(E-1)_3 \cdot (Zn^{2+})_4]$, в котором все краун-эфирные группы заняты катионами цинка, приводит к восстановлению флуоресценции примерно до уровня флуоресценции свободного лиганда (Рисунок 11).

С другой стороны, интенсивность флуоресценции комплекса $[(E,E-2)_3\cdot(Zn^{2+})_4]$, в котором три краунэфирные группы остаются незанятыми катионами цинка, почти в четыре раза ниже, чем свободного лиганда. Повидимому, для полного восстановления интенсивности флуоресценции необходимо, чтобы все краун-эфирные группы были заняты катионами, однако, добиться этого оказывается невозможным из-за большого положительного заряда образующегося комплекса.

Фотохимические превращения

Облучение раствора *E*-1 или *E,E*-2 в MeCN светом с $\lambda_{\text{возб.}}$ =355 или $\lambda_{\text{возб.}}$ =266 нм приводит к быстрому уменьшению оптической плотности в области ДПП лигандов в результате реакции *E,Z*-фотоизомеризации до достижения фотостационарных состояний. Спектр *Z*-1 был рассчитан с помощью метода Фишера^[35] (Рисунок 12).

Рисунок 12. Спектры поглощения раствора *E*-1 в MeCN (C_1 = 5·10⁻⁵ моль·л⁻¹, 3 мл) – (*I*), в фотостационарном состоянии, полученном после облучения светом с длиной волны 355 нм – (*2*) и 266 нм – (*3*), и спектр *Z*-изомера – (*4*), рассчитанный по методу Фишера.^[35]

Complexes of Crown Ether Derivatives with Transition Metals

Для определения квантовых выходов прямой и обратной реакции *E*,*Z*-фотоизомеризации анализировалась экспериментальная зависимость оптической плотности растворов *E*-1 и *E*,*E*-2 от времени облучения. Расчёт квантовых выходов проводился на основе численного решения соответствующих дифференциальных уравнений:

$$A \xrightarrow{hv} B$$

$$\frac{d[A]}{dt} = -\varphi_{A \to B} \times I^{A}_{\text{norn}} + \varphi_{B \to A} \times I^{B}_{\text{norn}}$$

$$\frac{d[B]}{dt} = +\varphi_{A \to B} \times I^{A}_{\text{norn}} - \varphi_{B \to A} \times I^{B}_{\text{norn}}$$

где $I^{A}_{\text{погл}}$ и $I^{B}_{\text{погл}}$ – количество поглощенных квантов излучения соответствующим веществом A и B за время dt, $\varphi_{A\to B}$ и $\varphi_{B\to A}$ – квантовые выходы прямой и обратной реакций соответственно; [A] и [B] – количество молекул соответствующего вещества.

Соединение E,E-2 содержит две двойных связи, способных к фотоизомеризации, поэтому метод Фишера неприменим для расчета спектра Z-изомера в этом случае. Однако нами было принято допущение, что в фотостационарном состоянии, полученном при облучении раствора E,E-2, основными компонентами являются E,E-2 и E,Z-2, а содержание Z,Z-2 мало. В рамках такого допущения, с помощью метода Фишера была произведена оценка спектра поглощения E,Z-2 и квантового выхода изомеризации одной C=C связи.

Получены значения квантовых выходов *E*,*Z*фотоизомеризации: для (*E*-**1**) $\phi_{E \to Z} = 0.423$, $\phi_{Z \to E} = 0.369$; для (*E*,*E*-**2**) $\phi_{E,E \to E,Z} = 0.157$, $\phi_{E,Z \to E,E} = 0.199$.

При облучении растворов лигандов в присутствии хлорной кислоты или солей металлов, координирующихся по атомам азота бипиридина, спектральные изменения малы (E-1) или практически отсутствуют (E,E-2). Малые спектральные изменения не позволили рассчитать спектр Z-изомера и соотношения квантовых выходов прямой и обратной реакции фотоизомеризации, так же они свидетельствуют о том, что процесс фотохимической трансформации в Z-изомер неэффективен, в результате реализуются иные пути релаксации возбужденного состояния, например, внутримолекулярный перенос заряда с образованием TICT-состояния молекул.

Отсутствие E,Z фотоизомеризации наблюдалось для комплексов Zn^{2+} с лигандами E-1 и E,E-2 состава $[L_3\cdot(Zn^{2+})]$. Добавление избытка перхлората цинка приводит к образованию комплекса состава $[L_3\cdot(Zn^{2+})_4]$, в котором катионы цинка связаны как с атомами азота бипиридина, так и с краун-эфирными фрагментами. При этом фотохимические свойства лигандов в составе комплекса становятся близки к свойствам свободного лиганда: растет интенсивность флуоресценции и обнаруживается способность к обратимой реакции E,Z-фотоизомеризации.

Спектральные изменения при облучении раствора $[(E-1)_3 \cdot (Zn^{2+})_4]$ (Рисунок 13), также как и квантовые вы-

ходы *E*,*Z*-фотоизомеризации ($\varphi_{E\to Z} = 0.343$, $\varphi_{Z\to E} = 0.402$), близки к свободному лиганду.

Рисунок 13. Спектры поглощения раствора комплекса *E*-1 с Zn²⁺ состава [L_3 ·(Mⁿ⁺)₄] (при избытке Zn²⁺) в MeCN ($C_1 = 5 \cdot 10^{-5}$ моль·л⁻¹, $C_{zn^{2+}} > 5 \cdot 10^{-2}$ моль·л⁻¹, 3 мл) – (1), в фотостационарном состоянии, полученном после облучения светом с длиной волны 355 нм – (2) и 266 нм – (3), и спектр *Z*-изомера – (4), рассчитанный по методу Фишера.^[35]

При облучении растворов комплексов *E*-1 *E*,*E*-2 состава $[L_3 \cdot (Cd^{2+})_1]$ наблюдается заметное уменьшение интенсивности ДПП, возможно, в результате реакции *E*,*Z*-фотоизомеризации. Однако, из спектров фотостационарных состояний не удалось рассчитать спектр поглощения *Z*-изомера, по-видимому, из-за сложности фотохимических процессов, протекающих при облучении кадмиевых комплексов.

Облучение комплексов *E*-**1** и *E*,*E*-**2** с Hg²⁺ приводит к уменьшению поглощения в области ДПП лиганда в результате *E*,*Z*-фотоизомеризации, причем, равновесие смещено в сторону исходного *E*-изомера. Квантовые выходы *E*,*Z*-фотоизомеризации для комплекса *E*-**1** с Hg²⁺ составляют $\varphi_{E\to Z} = 0.03$, $\varphi_{Z\to E} = 0.60$, а в случае *E*,*E*-**2** – $\varphi_{Z\to E} = 0.14$, $\varphi_{E\to Z} = 0.016$.

Выводы

Таким образом, изучение комплексообразования краунсодержащих 4-моно- и 4,4'-бис(стирил)бипиридинов с катионами металлов различной природы показало, что в случае солей Hg²⁺ и Fe²⁺ образуются комплексы хелатного типа, в которых две молекулы лиганда координируются вокруг центрального катиона металла. При взаимодействии лигандов с перхлоратами Zn^{II}, Cd^{II} и Co^{II} образуются комплексы, в которых центральный катион металла капсулируется тремя лигандами за счет координации с атомами азота бипиридиниевого фрагмента молекулы. При увеличении концентрации перхлоратов данных металлов наблюдается взаимодействие катионов с краун-эфирными фрагментами лигандов.

Комплексообразование по гетероциклической части лиганда сопровождается значительным тушением флуореценции лиганда, а также уменьшением квантового выхода обратимой реакции *E*,*Z*-изомеризации. Дополнительная координация катионов по краун-эфирному фрагменту восстанавливает флуоресценцию и способность к фотоизомеризации.

Данное исследование демонстрирует подходы к формированию гибридных металлоорганических фоточувствительных ансамблей различной структуры и состава, что представляет несомненный интерес для получения гибридных материалов, важных для технологий органической фотоники.

Благодарность. Работа выполнена при финансовой поддержке Министерства образования и науки РФ (Государственный Контракт № 16.740.11.046) и Российского фонда фундаментальных исследований (проекты № 09-03-00047, 09-03-93116, 10-03-93106).

Список литературы

References

- Kaes Ch., Katz A., Hosseini M.W. Chem. Rev. 2000, 100, 3553-3590.
- Piguet C., Bernardinelli G., Hapfgartner G. Chem. Rev. 1997, 97, 2005-2062.
- 3. Karunakaran C., Thomas K.R.J., Shunmugasundaram A., Murugesan R. J. Mol. Struct. 2000, 523, 213-221.
- 4. Karunakaran C., Thomas K.R.J., Shunmugasundaram A., Murugesan R. *J. Chem. Crystallogr.* **2000**, *30*, 351-357.
- Beer P.D., Kcian O., Mortimer R.J., Ridgway Ch., Stradiotto N.R. J. Electroanal. Chem. 1996, 408, 61-66.
- Wong W.Y., Tsang K.Y., Tam K.H., Lu G.L., Sun C.D. J. Organomet. Chem. 2000, 601, 237-245.
- Knof U., von Zelewsky A. Angew. Chem., Int. Ed. 1999, 38, 303-322.
- Belser P., Bernhard S., Jandrasics E., von Zelewsky A., De Cola L., Balzani V. *Coord. Chem. Rev.* 1997, 159, 1-8.
- 9. Ward M.D., White C.M., Barigelletti Fr., Armaroli N., Calogero G., Flamigni L. *Coord. Chem. Rev.* **1998**, *171*, 481-488.
- Balzani V., Juris A., Venturi M., Campagna S., Serroni S. Chem. Rev. 1996, 96, 759-833.
- 11. Kalyanasundaram K., Gätzel M. Coord. Chem. Rev. 1998, 177, 347-414.
- Baxter S.M., Jones W.E., Danielson E., Worl L., Strouse G., Younathan J., Meyer T.J. *Coord. Chem. Rev.* 1991, 111, 47-71.
- 13. Venturi M., Credi A., Bolzani V. *Coord. Chem. Rev.* **1999**, *186*, 233-256.

- Fedorova O.A., Gromov S.P., Alfimov M.V. *Izv. Akad. Nauk,* Ser. Khim. 2001, 11, 1882-1895 (in Russ.) [Russ. Chem. Bull. 2001, 50, 1970-1983].
- 15. Rurack K., Sczepan M., Spieles M., Resch-Genger U., Retting W. Chem. Phys. Lett. 2000, 320, 87-94.
- Bricks J.L., Slominskii J.L., Kudinova M.A., Tolmachev A.I., Rurack K., Resch-Genger U., Retting W. J. Photochem. Photobiol., A 2000, 132, 193-208.
- Demas J.N. Measurement of Photon Yields. In: Optical Radiation Measurements. Academic Press, 1982, Vol. 3, p. 195.
- 18. Nighswander-Rempel S.P. J. Fluoresc. 2006, 16, 483-485.
- 19. Nighswander-Rempel S.P., Riesz J., Gilmore J., Meredith P. J. Chem. Phys. 2005, 123, 1-6.
- Morris J.V., Mahaney M.A., Huber J.R. J. Phys. Chem. 1976, 80, 969–974.
- 21. Stewart J. J. P. J. Molecular Modeling 2007, 13, 1173-1213.
- 22. Lindsten G., Wannerstrom O., Thuin B. Acta Chem. Scand., B Org. Chem. Biochem. **1986**, 40, 545-554.
- 23. Marcotte N., Fery-Forgues S., Lavabre D., Marguet S., Pivovarenko V.G. J. Phys. Chem., A **1999**, 103, 3163-3170.
- Xia W.-Sh., Schmehl R.H., Li Ch.-J., Maguc J.T., Luo Ch.-P., Guldi D.M. J. Phys. Chem., B 2002, 106, 833-843.
- Shinkai S., Ogawa T., Nakaji T., Manabe O. *Chem. Commun.* 1980, 9, 375-377.
- Kipriyanov M., Mikhailenko F. *Khim. Geterotsikl. Soedin.* 1967, 270 (in Russ.).
- 27. Beer P.D., Kocian O., Mortimer R.J., Ridgway C. Dalton Trans. 1993, 2629-2638.
- Fedorova O.A., Andryukhina E.N., Mashura M.M., Gromov S.P. *Arkivoc* 2005, 15, 12-24.
- Goronovskii I.T., Nazarenko Yu.P., Nekryach E.F. Kratkii Spravochnik Khimika [The Chemist's Brief Handbook] (Kurilenko O.D., Ed.) Kiev: Naukova Dumka, 1974, 991 p. (in Russ.).
- Grabulosa A., Beley M., Gros P.C. Inorg. Chim. Acta 2010, 363, 1404-1408.
- Kyeong Jong Lee, Il Yoon, Shim Sung Lee, Bu Yong Lee Bull. Korean Chem. Soc. 2002, 23, 399-403.
- Vijila C., Ramalingam A., Palanisamy P.K., Masilamani V. Spectrochim. Acta, Part A 2001, 57, 491-497.
- Sowmiya M., Purkayastha P., Tiwari A.K., S. Syed Jaffer, Subit K. Saha J. Photochem. Photobiol., A 2009, 205, 186-196.
- Sarkar N., Das K., Nath D.N., Bhattacharyya K. *Langmuir* 1994, 10, 326-329.
- 35. Fischer E. J. Phys. Chem. 1967, 71, 3704-3706.

Received 20.11.2010 Accepted 17.12.2010