DOI: 10.6060/mhc140486z

Реакция µ-нитридодимерного фталоцианината железа(IV) с перекисью дикумола

С. В. Зайцева,^{а@} О. Р. Симонова,^а С. А. Зданович,^а Е. В. Кудрик,^b О. И. Койфман^{а,b}

Посвящается академику РАН Олегу Николаевичу Чупахину по случаю его 80-летнего юбилея

^аИнститут химии растворов им. Г.А. Крестова РАН, 153045 Иваново, Россия ^bИвановский государственный химико-технологический университет, 153000 Иваново, Россия [@]E-mail: svz@isc-ras.ru

Спектрофотометрически изучена реакция стабильного µ-нитридодимерного тетра-4-трет-бутилфталоцианината железа(IV) с перекисью дикумола. Получены кинетические характеристики и предложен механизм данного процесса. Показано, что реакция µ-нитридодимерного фталоцианината железа(IV) с перекисью дикумола проходит через стадию координации органического субстрата с последующим одноэлектронным окислением координированным субстратом. Продуктом реакции одноэлектронного окисления является катион-радикал µ-нитридодимерного фталоцианината железа(IV). Окисленная форма легко восстанавливается до Fe^{+3.5} в присутствии имидазола.

Ключевые слова: Фталоцианин, комплекс, железо, пероксид, окисление.

Reaction of μ -Nitrido Diiron(IV) Phthalocyanine with Dicumyl Peroxide

Svetlana V. Zaitseva,^{a@} Olga R. Simonova,^a Sergei A. Zdanovich,^a Evgeniy V. Kudrik,^b and Oscar I. Koifman^{a,b}

Dedicated to Academician Oleg N. Chupakhin on the occasion of his 80th Birthday

^aG.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia ^bIvanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia [@]Correspondong author E-mail: svz@isc-ras.ru

The reaction of stable μ -nitrido diiron(IV) tetra-4-tert-butylphthalocyane with dicumyl peroxide was under study. Kinetic characteristics were obtained and the mechanism of this process was proposed. It is shown, that the reaction of μ -nitrido diiron(IV) tetra-tert-butylphthalocyane with dicumyl peroxide passes through the stage of peroxide coordination with following one-electron oxidation by coordinated substrate. One-electron oxidation reaction product was the cation-radical of μ -nitrido diiron(IV) tetra-4-tert-butylphthalocyane. The oxidized form is easily reduced to Fe^{+3.5} at imidazole presence.

Keywords: Phthalocyanine, complex, iron, peroxide, oxidation.

Введение

Использование биядерных тетрапиррольных макроциклических комплексов в качестве катализаторов окислительно-восстановительных процессов является одним из перспективных направлений каталитической химии. До недавнего времени такие димерные комплексы, по сравнению с мономерными, считались каталитически инертными и игнорировались как катализаторы. В настоящее время известно большое количество работ, где показано, что µ-оксодимерные комплексы фталоцианинатов железа демонстрируют превосходные каталитические свойства в селективном окислении ароматических соединений и спиртов.[1-5] Считается, что как моноядерные, так и биядерные комплексы железа активируют некоторые окислители, (перекись водорода, органические пероксиды, йодобензол, соединения, содержащие высоковалентный йод, и т.д.), с образованием высоковалентных оксо-форм, характеризующихся высокой каталитической активностью.[6,7] Однако остается проблемой низкая устойчивость µ-оксодимерных комплексов.

В поисках стабильных биядерных структур, особый интерес вызывают *N*-мостиковые димерные макрогетероциклические комплексы железа. Следует отметить, что до недавнего времени µ-нитридодимерные порфириновые, фталоцианиновые и смешанолигандные системы, практически не рассматривались в качестве катализаторов редокс процессов. Исследования, проведенные в последнее время, свидетельствуют о значимых каталитических свойствах стабильного µ-нитридодимерного фталоцианината железа в реакциях окисления алифатических и ароматических углеводородов.^[2,6,8-12] Каталитическая активность *N*-мостиковых структур во многом обусловлена стабилизацией активных частиц, образующихся при взаимодействии µ-нитридодимерных комплексов с окислителями, а также высокой устойчивостью указанных соединений в условиях каталитической реакции.

Для лучшего понимания механизмов окисления в биологических системах и технических процессах остается актуальным изучение структурных особенностей и свойств µ-нитридодимерных макроциклических соединений в редокс превращениях.

Рисунок 1. Структура μ -нитридодимерного тетра-4-*трет*-бутилфталоцианината железа(IV) ([(Fe^{IV}Pc)₂N⁺]X⁻).

С этой целью исследовано взаимодействие µ-нитридодимерного тетра-4-*трет*-бутилфталоцианината железа(IV) с перекисью дикумола в бензоле при 295 К.

Экспериментальная часть

 μ -Нитридодимерный тетра-4-трет-бутилфталоцианинат железа(IV) получали по известной методике.^[13] ЭСП (бензол) $\lambda_{\text{тах}}$ нм (lgɛ): 680 (4.21), 645 (4.90), 540 (4.63), 343 (4.92).

ЭПР-спектры были получены на спектрометре Bruker ESP 300E. ЭСП регистрировали на приборе Cary 50 при T = 295 К.

В работе была использована перекись дикумола 98 % производства "Sigma-Aldrich".

Методики получения кинетических параметров исследуемой реакции и оптимизации величин $k_v, k_{s\phi}$ подробно изложены в работе^[14]. Эксперимент проводился при 295 К в осушенном бензоле при постоянной концентрации димерного комплекса и различных концентрациях перекиси дикумола. Эффективные константы скорости ($k_{s\phi}$) определяли по изменению оптической плотности раствора на рабочих длинах волн $\lambda = 626-642$ нм, через определенные промежутки времени по уравнению формально первого порядка (1) при условии избытка перекиси дикумола:

$$k_{\rm ab} = 1/\tau \cdot \ln(c_0/c_{\tau}) \tag{1}$$

Здесь $c_{_0},\,c_{_\tau}-$ концентрации
 μ -нитридодимерного фталоцианината железа в моменты времен
и0и т.

Результаты и обсуждение

Реакция $(Fe^{IV}Pc)_2N^+$ (Рисунок 1) с перекисью дикумола (ROOR) характеризуется двумя наборами спектральных изменений с четко выраженными изобестическими точками (Рисунок 2). Это свидетельствует о том, что имеют место две последовательные реакции. Первая серия спектральных изменений электронного спектра поглощения комплекса заключается в гипсохромном смещении и уменьшении интенсивности Q полосы 645 нм до 626 нм (Рисунок 2а). Такого рода изменения говорят о координации субстрата на атоме металла макроциклического комплекса.^[12,15-18]

В ходе второй последовательной реакции наблюдается возникновение широкой полосы 680 нм и гипсохромное смещение полосы 540 нм на 2 нм (Рисунок 2б). ЭСП образующегося, в результате этой реакции, комплекса характерен для димерных фталоцианинатов металлов, имеющих катион-радикал на макроциклическом лиганде.^[19] Наличие катион-радикальной формы μ-нитридодимерного фталоцианината железа(IV) подтверждается ЭПР-спектроскопией. В ЭПР-спектре комплекса обнаруживается единичный узкий сигнал с g-фактором 2.003, близким к g-фактору свободного электрона (Рисунок 3). Димерные комплексы железа могут показывать широкие неразрешенные сигналы с g = 2.0,^[20] однако именно узкий сигнал, близкий по форме и положению к сигналу свободного электрона может быть отнесен к делокализованному электрону на π-системе фталоцианинового макроцикла.^[21] Подобный сигнал наблюдался для фталоцианинового катионрадикала, полученного электрохимическим окислением фталоцианината лития.[22]

Рисунок 2. Изменение ЭСП µ-нитридодимерного тетра-4-*трет*-бутилфталоцианината железа(IV) в ходе реакции с перекисью дикумола ([ROOR] = $2.3 \cdot 10^{-2}$ моль/л, [(PcFe^{IV})₂N⁺] = $1.18 \cdot 10^{-5}$ моль/л); а) стадия координации пероксида $\tau = 0.7$ мин., б) стадия образования катионрадикала (PcFe^{IV})₂N⁺ $\tau = 7.155$ мин.

Рисунок 3. ЭПР-спектр катион-радикала µ-нитридодимерного тетра-4-*трет*-бутилфталоцианината железа(IV) при 120 К.

Образование донорно-акцепторного пероксокомплекса, а затем и катион-радикала µ-нитридодимерного фталоцианината железа(IV) (через гомолитический разрыв связи О-О в пероксо-комплексе) проходит во времени, что позволяет нам получить кинетические характеристики этих последовательных реакций. Линейный вид зависимости концентрации комплекса от времени в координатах $\ln(c_0/c_\tau)$ от $f(\tau)$ и удовлетворительное постоянство значений k_{30} (Рисунок 4, Таблица 1)

Рисунок 4. Зависимость $\ln(c_0/c_{\tau})$ от т при 298 К ([(PcFe^{IV})₂N⁺] = 1.18·10⁻⁵ моль/л): а) стадия координации пероксида [ROOR] = 2.3·10⁻² моль/л (1), 2.3·10⁻³ моль/л (2), 2.3·10⁻⁴ моль/л (3), 2.3·10⁻⁵ моль/л (4); б) стадия образования катион-радикала (PcFe^{IV})₂N⁺ [ROOR] = 2.3·10⁻² моль/л (1), 2.3·10⁻³ моль/л (2), 2.3·10⁻⁴ моль/л (3), 2.3·10⁻⁵ моль/л (4).

Таблица 1. Кинетические параметры реакции µ-нитридодимерного фталоцианината железа(IV) с перекисью дикумола в бензоле при 298 К.

[ROOR]·10 ³ , моль/л	$k_{_{3\phi}} \cdot 10^3, c^{-1}$
$[(PcFe^{IV})_2N^+] = 1.18 \cdot 10^{-5}$ моль/л	
23.0	59.13
2.3	8.65
0.23	3.06
0.023	0.47
$k_1 = 6.87 \cdot 10^{-1} \text{ с}^{-1}$ моль $^{-1}$ л ¹	
23.0	8.60
2.3	3.97
0.23	2.04
0.023	0.80
$k_2 = 3.2 \cdot 10^{-4} \text{ c}^{-1}$ моль $^{-1}$ л ¹	
[Im]·10 ³ , моль/л	$k_{_{3\phi}} \cdot 10^1, \mathrm{c}^{-1}$
[(PcFe ^{IV}) ₂ N ⁺] = 1.18·10 ⁻⁵ моль/л	
[ROOR] = 2.3·10 ⁻⁴ моль/л	
4.5	4.15
2.5	2.45
1.0	1.53
$k^* = 12.58 \cdot c^{-1}$ моль $^{-1}$ л ¹	

*значение константы скорости реакции восстановления катионрадикала μ-нитридодимерного фталоцианината железа(IV) имидазолом при 298 К. доказывает, что обе реакции идут в условиях первого порядка по димерному фталоцианинату железа(IV). Эффективные константы скорости первого порядка $k_{_{3\phi}}$ увеличиваются прямо пропорционально росту концентрации пероксида (Рисунок 5).

Рисунок 5. Зависимость эффективной константы скорости реакции от концентрации перекиси дикумола: а) для стадии координации пероксида, б) для стадии образования катионрадикала (Pc^{IV}Fe)₂N⁺.

Из линейной зависимости (Рисунок 5):

$$\lg k_{\rm ab} = \lg k_{\rm v} + n \cdot \lg[\text{ROOR}] \tag{2}$$

определены порядок по пероксиду (n=1 и 0 для первой и второй реакций соответственно) и константы скорости прямых реакций (Таблица 1). С учетом порядков по реагентам можно записать экспериментальное уравнение скорости процесса взаимодействия µ-нитридодимерного фталоцианината железа(IV) с перекисью дикумола:

$$-d[(\mathrm{F}\mathrm{e}^{\mathrm{IV}}\mathrm{P}\mathrm{c})_{2}\mathrm{N}^{+}]/d\tau = k_{v}[(\mathrm{F}\mathrm{e}^{\mathrm{IV}}\mathrm{P}\mathrm{c})_{2}\mathrm{N}^{+}][\mathrm{ROOR}] \quad (3)$$

Первая медленная реакция протекает быстрее второй медленной на 3 порядка, что и позволило получить четкое спектральное проявление обеих последовательных реакций, с сохранением изобестических точек. На основании спектральных изменений и полученных кинетических характеристик теоретическая схема исследуемого процесса представляет собой квазиравновесие:

$$(Fe^{IV}Pc)_2N^+ + ROOR \xrightarrow{K_p, k_1} (ROOR)(Fe^{IV}Pc)_2N^+$$
(4)

 $(\text{ROOR})(\text{Fe}^{\text{IV}}\text{Pc})_2\text{N}^+ \xrightarrow{k_2} (\text{RO})(\text{Fe}^{\text{IV}}\text{Pc}^{+\bullet})\text{N}^+(\text{Fe}^{\text{IV}}\text{Pc})^+$

$$k_2 \ll k_1$$
, прямой реакции (5)

Уравнение скорости для каждой прямой реакции теоретической схемы имеет вид:

$$-d[(Fe^{IV}Pc)_2N^+]/d\tau = k_1 [(Fe^{IV}Pc)_2N^+][ROOR]$$
(6)

$$-d[((\text{ROOR})\text{F}e^{\text{IV}}\text{P}c)_2\text{N}^+]/d\tau = k_2[(\text{ROOR})(\text{F}e^{\text{IV}}\text{P}c)_2\text{N}^+]$$
(7)

Выразим концентрацию комплекса (ROOR) $(Fe^{IV}Pc)_2N^+$, через константу равновесия и концентрации реагирующих веществ из уравнения (4):

$$[(\text{ROOR})(\text{Fe}^{\text{IV}}\text{Pc})_2\text{N}^+] = K_p \cdot [(\text{Fe}^{\text{IV}}\text{Pc})_2\text{N}^+][\text{ROOR}]$$
(8)

Подставляем выражение (8) в уравнение (7) и получаем окончательное уравнение скорости по лимитирующей реакции:

$$-d[((\text{ROOR})\text{Fe}^{\text{IV}}\text{Pc})_2\text{N}^+]/d\tau = k_2 K_p \cdot [(\text{Fe}^{\text{IV}}\text{Pc})_2\text{N}^+][\text{ROOR}] (9)$$

Полученное уравнение скорости для лимитирующей реакции теоретической схемы процесса (4, 5) совпадает с экспериментально полученным уравнением скорости (2), где $k_v = k_2 K_p$ и подтверждает установленные порядки по реагентам.

Суммируя уравнения (4) и (5) получаем общую реакцию µ-нитридодимерного фталоцианината железа(IV) с перекисью дикумола:

$$(Fe^{IV}Pc)_{\gamma}N^{+} + ROOR \rightarrow (RO)(Fe^{IV}Pc^{+})N^{+}(Fe^{IV}Pc)^{+}$$
(10)

Полученная реакция (10), описывается как экспериментальным (3), так и теоретическим (9) уравнениями скорости.

Следует отметить, что окисленная форма μ -нитридодимерного фталоцианината железа(IV) (RO)(Fe^{IV}Pc⁺⁺)N⁺(Fe^{IV}Pc)⁺ может восстанавливаться в присутствии имидазола. В этом случае наблюдается

Рисунок 6. Изменение ЭСП катион-радикала µ-нитридодимерный тетра-4-*трет*-бутилфталоцианината железа(IV) в ходе реакции с имидазолом ([ROOR] = $2.3 \cdot 10^{-4}$ моль/л, [(PcFe^{IV})₂N⁺] = $1.18 \cdot 10^{-5}$ моль/л, [Im] = $4.5 \cdot 10^{-3}$ моль/л).

существенный рост интенсивности, сужение и батохромное смещение полосы 626 нм на 16 нм. Снижается интенсивность широких полос 538 нм и 680 нм до их, практически полного, исчезновения (Рисунок 6). ЭСП образующегося комплекса, с четкими изобестическими точками, идентичен ЭСП µ-нитридодимерного фталоцианината Fe^{+3.5}.^[19] Порядки по веществам, участвующим в реакции, равны 1 (Рисунок 7). Константа скорости процесса восстановления представлена в Таблице 1.

Рисунок 7. Зависимость $\ln(c_0/c_{\tau})$ от т при 298 К ([(PcFe^{IV})₂N⁺] = 1.18·10⁻⁵ моль/л [ROOR] = 2.3·10⁻² моль/л) [Im] = 4.5·10⁻³ моль/л (1), 2.5·10⁻³ моль/л (2), 1.0·10⁻³ моль/л (3) (*a*); Зависимость эффективной константы скорости восстановления от концентрации имидазола (δ).

Заключение

образом, установлено, Таким что реакция µ-нитридодимерного фталоцианината железа(IV) с перекисью дикумола сопровождается образованием донорно-акцепторного комплекса (ROOR)(Fe^{IV}Pc)₂N⁺ с последующим одноэлектронным окислением координированным органическим пероксидом. Продуктом реакции одноэлектронного окисления является катион-радикал µ-нитридодимерного фталоцианината железа(IV) довольно стабильный в условиях окружающей среды. Окисленная форма может легко регенерироваться в присутствии органического основания. Высокая степень окисления Fe и наличие катионрадикала на фталоцианиновом лиганде, могут повышать окислительную активность комплекса в различных окислительно-восстановительных реакциях. Полученные в работе данные могут быть необходимы для обоснования механизмов таких процессов и поиска эффективных каталитических систем на основе макроциклических соединений.

Признательность. Работа выполнена при поддержке Программы фундаментальных исследований РАН № 1ОХНМ «Теоретическое и экспериментальное изучение природы химической связи и механизмов важнейших химических реакций и процессов» и Российского фонда фундаментальных исследований (проект № 12-03-00563а).

Список литературы

- 1. Afanasiev P., Kudrik E.V., Sorokin A.B., Koifman O.I., Albrieux F., Briois V. *Chem. Commun.* **2012**, *48*, 6088-6090.
- Silaghi-Dumitrescu R., Uta M.M., Makarov S.V., Dereven'kov I.A., Stuzhin P.A. *New J. Chem.* 2011, 35, 1140-1145.
- 3. Sorokin A.B., Tuel A. Catalysis Today 2000, 57, 45-59.
- 4. Geraskin I.M., Luedtke M.W., Neu H.M., Nemykin V.N., Zhdankin V.V. *Tetrahedron Lett.* **2008**, *49*, 7410-7412.
- 5. Neu H.M., Yusubov M.S., Zhdankin V.V., Nemykin V.N. *Adv. Synth. Catal.* **2009**, *351*, 3168-3174.
- 6. Sorokin A.B., Kudrik E.V. Catal. Today 2011, 159, 37-46.
- 7. Harischandra D.N., Lowery G., Zhang R., Newcomb M. Org. Lett. 2009, 11, 2089-2092.
- 8. Kudrik E.V., Sorokin A.B. Macroheterocycles 2011, 4, 154-160.
- Sorokin A.B., Kudrik E.V., Bouchu D. Chem. Commun. 2008, 44, 2562-2564.
- 10. Isci U., Dumoulin F., Ahsen V., Sorokin A.B. J. Porphyrins Phthalocyanines 2010, 14, 324-334.
- Sorokin A.B., Kudrik E.V., Alvarez L.X., Millet J-M. M., Bouchu D. *Catal. Today* 2010, *157*, 149-154.
- 12. Afanasiev P., Millet J.-M.M., Bouchu D., Kudrik E.V., Sorokin A.B. *Dalton Trans.* **2011**, *40*, 701-710.
- Isci U., Afanasiev P., Millet J.-M.M., Kudrik E.V., Ahsen V., Sorokin A.B. *Dalton Trans.* 2009, 7410-7420.
- Experimental Methods of Chemical Kinetics (Emanuel N.M., Sergeev G.B., Eds.) Moscow: Vyssh. shk., **1980**. 375 p. (in Russ.) [Экспериментальные методы химической кинетики (Эмануэль Н.М., Сергеев Г.Б., ред.) М.: Высш. шк., **1980**. 375 с.]
- Zaitzeva S.V., Zdanovich S.A., Ageeva T.A., Ocheretovi A.S., Golubchikov O.A. *Molecules* 2000, *5*, 786-796.
- 16. Zaitseva S.V., Zdanovich S.A., Golubchikov O.A. Russ. J. Coord. Chem. 2002, 28, 843-847.
- Zaitseva S.V., Zdanovich S.A., Semeikin A.S., Koifman O.I. *Russ. J. Gen. Chem.* 2008, 78, 493-502.
- Mot A.C., Syrbu S.A., Makarov S.V., Damian G., Silaghi-Dumitrescu R. *Inorg. Chem. Commun.* 2012, 18, 1-3.
- Afanasiev P., Bouchu D., Kudrik E.V., Millet J.-M.M., Sorokin A.B. *Dalton Trans.* 2009, 9828-9836.
- 20. Tripathi A.K., Mathur P., Baijal J.S. Polyhedron 1994, 13, 1005.
- 21. Maroie S., Savy M., Verbist J.J. Inorg. Chem. 1979, 18, 2560.
- 22. Turek P., Andr'e J.J., Girardeau A., Simon J. *Chem. Phys. Lett.* **1987**, *134*, 471-476.

Received 15.04.2014 Accepted 22.04.2014