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Introduction

Supramolecular chemistry has developed to mimic 
the weak non-covalent interactions and the phenomenon 
of the molecular recognition in biological systems.[1-5] The 
characterizing feature of the supramolecular chemistry is 
that carefully designed synthetic structures (hosts) recognize 
target molecules (guests) forming a supramolecular complex 
through non-covalent complexes. Supramolecular chemistry 
and the quantification of non-covalent interactions offer the 
basis for new approaches in medicine, host-guest chemistry,[6] 
chromatography,[7] and biocatalysis.[8] 

A host-guest relationship involves a complementary 
stereoelectronic arrangement of binding sites in host and 
guest, the host component is defined as an organic molecule 
or ion whose binding sites converge in the complex the guest 
component is defined as any molecule or ion whose binding 
sites diverge in the complex. In this study host molecules are 
hemispherands, cryptahemispherands, and bridged calix-4. 
“Hemispherands” have been defined as hosts, at least half 
of whose structures are composed of units unable to fill their 
own potential cavities by conformational reorganizations. 
Hemispherands represent an interesting class of host 
molecules in supramolecular chemistry. Cram and coworkers 
and Reinhoudt and coworkers have extensively investigated 
the complexation behavior of hemispherand molecules with 
various binding sites.[9-16] Hemispherands are very efficient 
hosts for alkali metals and ammonium ions. They form 
mainly 1:1 complexes, and solid-state structural analyses 
show the ion perching above the macrocyclic cavity of the 
host. The designation "cryptahemispherand" was given by 
Cram in 1986 to the class of macrobicyclic compounds which 
show an extraordinary propensity for complexation of alkali 
metal cations.[9] Cryptahemispherands combine the partially 
preorganized cavity features of the hemispherands, but contain 

multiple other ligand-gathering features of the cryptands. The 
term “calixarene” was introduced by Gutsche to describe a 
homologous series of macrocyclic phenolformaldehyde 
condensates.[17] It originates from the observation that, in 
molecular models, the tetrameric members of the series 
have a chalicelike or cuplike appearance. Calixarenes are 
mainly receptors for small neutral molecules, but they also 
interact with cations if the solutions are sufficiently basic to 
permit deprotonation of the phenolic groups.[18-19] Bridged 
calixarenes, in which structural features of calixarenes and 
spherands are combined, have been prepared by Reinhoudt 
and co-workers.[20] These novel compounds exhibit high 
binding ability for alkali cations due to a high degree of 
preorganization and the highly hydrophobic collar around 
the molecular cavity which prevents solvent molecules from 
assisting in the decomplexation process. Cation complexes 
play a fundamental role in many biological systems; large 
quantities of sodium, potassium, magnesium, and calcium 
ions, in particular, are all critical to life. For example, a 
concentration gradient of K+ and Na+ across biological cell 
membranes is vital to nerve signal transduction.

In the present work, to understand the effect of 
macrocyclic compounds on the thermodynamic stabilities 
of the resulting chelates, the association constant of sodium 
chelate was regarded as a quantitative base. It depends on 
many factors, including the strength of metal-ligand bonds, 
the shape of coordination macrocycle, the sterical inter-
actions between atomic groups in a molecule, and solvation 
interactions.[16] Here the effect of a solvent and temperature 
on the association constant was eliminated.

According to the reference searching, there were 
not many papers on predicting association constants of 
macrocycle chelates. Recently, the author has studied the 
QSPR modeling of diverse 15C5 ether chelates with sodium 
cation using GA-MLR method,[21] Ghasemi and Saaidpour[22] 
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reported QSPR modeling of association constants of diverse 
15C5 ethers chelates with lithium cation. Zhang et al. reported 
QSPR of association constants of cesium chelates based on 
uniform design optimized support vector machine.[23] Lately, 
we have studied the QSPR modeling of association constants 
of the Li-hemispherands complexes using MLR.[24] There  
were no published reports on molecular modeling studies to 
obtain QSPR for association constants of sodium chelates 
with hemispherands, cryptahemispherands, and bridged 
calix-4. The present work was to build a new model on 
association constants, and give an insight into sodium 
chelates with these macrocycles.

The object of this study is the development of a 
predictive QSPR model of stability constant for sodium and 
macrocycles. The important aspects of suggested model 
are the self-organizing maps data splitting, validation of the 
QSPR model for predictivity (both by internal and external 
validation), attention to the applicability domain of the model, 
and the interpretation of selected molecular descriptors. This 
model enables to make reliable predictions of the association 
constant for unknown complexes and to elucidate the structural 
factors determining the association constants.  

Experimental 

The chemical structures and experimental values for the 
stability constants of fifty three compounds taken from the 
literature[25] are presented in the Tables 1 and 4, respectively. The 
data set was split into a training set and a test set with self organizing 
map (SOM). The training set of 40 macrocycles was used to adjust 
the parameters of the models, and the test set of 13 macrocycles 
was used to evaluate its prediction ability. Since the temperature 
and solvent also affect the stability constants, we used only data 
obtained at standard temperature (25°C) and just in CDCl3 saturated 
with D2O. Experimental logK values vary from 4.32 to 12.08, and 
5.36 to 10.04 for training and test sets respectively.

Descriptor Generation

All calculations were run on a Pentium IV personal computer 
with windows XP as operating system. The structures were drawn 
in HyperChem 7.5[26] and the geometrical structure of macrocycles 
was optimized using semi-empirical quantum method Austin 
Method 1 (AM1)[27] using the Polack-Rabiere algorithm until the 
root mean square gradient was 0.01 within the MOPAC[28] program 
package. The geometry and other information from the output of 
quantum chemical calculations were inserted into the Dragon 
program,[29] and descriptors for macrocycles were calculated. All 
these descriptors are derived solely from molecular structure and 
do not require experimental data to be calculated. More than 350 
molecular descriptors is derived to properly characterize the chemical 
structure of the fifty three macrocycle compounds, involving 
variables of the type Constitutional, Topological, GETAWAY 
(GEometry, Topology and Atoms-Weighted AssemblY), WHIM 
(Weighted Holistic Invariant Molecular descriptors), 3D-MoRSE 
(3D-Molecular Representation of Structure based on Electron 
diffraction), Aromaticity Indices. 

Data Splitting

To build and validate the QSPR model, the studied dataset 
is divided into a training set and a test set using self-organizing 
maps (SOM), which takes advantage of the clustering capabilities, 
ensuring that both the training set and test set separately span the 

whole descriptor space and the chemical domains in the two sets 
are not too dissimilar.[30-31] SOM package for MATLAB was down-
loaded and used from http://www.cis.hut.fi/projects/somtoolbox/. The 
35 of the most significant principal components calculated from each 
group of DRAGON molecular descriptors were used to describe the 
relevant structural information of the macrocycles and were used 
as variables to build a Kohonen map (6×6 neurons, 300 epochs). 
Figure 1 shows the number of the macrocycles in each cell of the top-
map of the Kohonen network after the training. Not all the neurons 
were occupied. When a cell was occupied by only one sample, this 
macrocycle was selected for the training set. When more than one 
macrocycle with very different values of logK was present in a cell, 
the two samples with extreme values of the responses plus, eventually, 
an intermediate value were selected. The samples not selected for the 
training set were put into the test set. The training set and the test set 
consisted of 40 and 13 objects, respectively.

Feature Selection and Model Construction

In this study, a total of 350 descriptors were initially calculated 
by Dragon software for the entire data set of 53 macrocycles. 
The total number of descriptors was reduced to 303 descriptors, 
by eliminating the collinear descriptors (correlation coefficient is 
less than 0.1). The best set of descriptors was selected by forward 
stepwise regression procedure. The forward stepwise regression 
procedure[32] is an interesting approach both from the didactical 
point of view and for the simplicity of the algorithm that involves. It 
consists on a step by step addition of the best molecular descriptors 
to the model that lead to the smallest value of the standard deviation 
(S), until there is no other variable outside the equation that satisfies 
the selection criterion. The definition of S employed in present 
analysis is as follows:
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where yi, iŷ and y  are, respectively, the measured, predicted, and 
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and predictability. The QSPR model developed using only training 
set chemicals is then applied to the external validation set chemicals 
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where yi 
and iŷ  are respectively the measured and predicted (over 

the test set) values of the dependent variable, and try  is the averaged 
value of the property for the training set; the summations cover all 
the compounds in the test set. 

The Q2 value is good tests for evenly distributed data, but 
they are not always reliable for unevenly distributed datasets; 
instead RMSEs (Root Mean Squared Errors) provide a more 
reliable indication of the fitness of the model, independently of 
the applied splitting. Other useful parameters to be considered are 
the RMSEs calculated on different sets: on calibration or training 
(RMSEC), and prediction or test (RMSEP). RMSE is calculated 
as in Equation 4:

						      (4)

where y
i 
and iŷ  are respectively the measured and predicted values 

of the property; n is the number of compounds in each set of data.
It is important to note that RMSE values must not only be 

low but also as similar as possible for the training and test sets: this 
suggests that the proposed model has both predictive ability (low 
values) as well as sufficient generalization (similar values).[33]

Furthermore, a variance inflation factor (VIF) analysis 
was performed to see if multicollinearities existed between the 
descriptors in the model. The VIF value is calculated from (1/1-r2), 
where r2 is a multi correlation coefficient of one descriptor’s effect 
regressed on the remaining molecular descriptors. Models are not 
accepted, if they contained descriptors with VIFs over a value of 10. 
This ensured that the squared multicollinearity coefficient for each 
descriptor in the model did not exceed 0.90.[34-35] Finally, the model 
was validated using the external validation set.

Applicability Domain

A crucial problem of a QSPR model is the applicability 
domain (AD). Not even a robust, significant, and validated QSPR 
model can be expected to reliably predict the modeled property for 
the entire universe of chemicals. In fact, only the predictions for 
chemicals falling within this domain can be considered reliable and 
not model extrapolations. 

A way of defining the AD of a QSPR model is according 
to the leverage of a compound. The leverage h[36] of a compound 
measures its influence on the model. The leverage of a compound 
in the original variable space is defined as:

hi = xT
i (XTX)-1xi	 (i=1,…, n)		  (5)

where xi is the descriptor vector of the considered compound 
and X is the model matrix derived from the calibration set descriptor 
values. The warning leverage[37] is defined as follows:

h* = 3×Σihi/n = 3×p′/n	 (i=1,…, n)		  (6)

where n is the number of training compounds and p´ is the number 
of model parameters.

To visualize the AD of a QSPR model, the plot of standardized 
residuals versus leverage values (h) can be used for an immediate 
and simple graphical detection of both the response outliers (i.e., 
compounds with cross validated standardized residuals greater 
than 2.5 standard deviation units, >2.5 s) and structurally 
influential chemicals in a model (h > h*).

Through the leverage approach, it is possible to verify 
whether a new chemical will lie within the structural model 
domain or outside the domain. A compound with high leverage 
in a QSPR model would fortify the model, if the compound is in 
the training set, but such a compound in the test set could have 

unreliable predicted data, the result of substantial extrapolation 
of the model.[38]

Results and Discussion

After the descriptors calculation, totally 35 most 
significant principal components calculated from each group 
of DRAGON molecular descriptors were used as variables 
to build a Kohonen map (6×6 neurons, 300 epochs). On the 
basis of the trained network, the compounds fell into different 
neuron of the top map (Figure 1). As a result, 40 compounds 
were included in the training set and 13 compounds fell 
into the test set. Figure 1 shows the Occupation of the 6×6 
Kohonen top-map. 

Figure 4 indicates molecular descriptors, experimental 
and predicted logK of macrocycle chelates for Na+, in this 
table the test set indicated with bold. The Forward stepwise 
regression was performed on the 40 macrocycles of the 
training set selected by SOM. 

Figure 1. Occupation of the 6×6 Kohonen top-map.

Figure 2. Williams plot of model. The training and test set 
samples are labeled differently. The dashed lines are the 2.5 limit 
and the warning value of hat (h*= 0.375).
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Figure  3. The plot of the predicted versus experimental logK 
values for training and test sets of chelates of macrocycles with 
Na+.

MLR Model and Applicability Domain

A four parameter linear model was obtained for 
prediction of association constant of macrocycle compounds. 
The best significant relationship for the logK of macrocycles 
has been deduced to be

logK = ‑143.28(±13.46) – 20.59(±1.92)E1ν + 3.09(±0.19)
IC 5 – 57.65(±5.20)LP 1 ‑0.24(±0.04)RDF 125m	 (7)

nCalibration=40; nPrediction=13
Q2

Calibration=0.95; Q2
LOO=0.94; Q2

Prediction=0.92
RMSEC=0.469; RMSECV=0.528; RMSEP=0.455

The MLR model results are given in Table 2; b and Sb are 
the nonstandardized coefficient of descriptors and standard 
error of coefficient, respectively, and bs is the standardized 
regression coefficient. The molecular descriptors, descriptor 
type, definition of descriptors, and coefficient of descriptors 
are presented in Table 2. Table 3 indicates the linear 
correlation-coefficient matrix for logK and five descriptors 
in the MLR model. In Figure 3, the plot of predicted logK by 
the MLR model employed against the experimental logK is 
represented. 

The inter-correlation of the descriptors used in the 
MLR model (Table 3) was low (below 0.66), which is in 
conformity to the study that for a statistically significant 
model, it is necessary that the descriptors included in the 
equation should not be inter-correlated with each other.[39] To 
further check the inter-correlation of descriptors VIF analysis 
was performed. The VIF for each descriptor is summarized 
in Table 2. As one can see, the VIF values are all less than 
1.3, indicating the stability of the equations constructed 
(according to statistics principle, a value of 1.0 is indicative 
of no correlation, while a value of under 10.0 is statistically 
satisfactory).[34-35]

The applicability domain of the reported model was 
verified by an analysis of the Williams graph of Figure 2, 
in which the standardized residuals and the leverage value 
(h) are plotted. On analyzing the model AD in the Williams 

plot of MLR model (Figure 2) all of chemicals belong to 
the applicability domain and there was not any compound 
in outlier.

Interpretation of the Descriptors

The standardized regression coefficients reveal the 
significance of an individual descriptor presented in the 
regression model. Obviously, in Table 2, the effect of IC5 on 
the association constant of the macrocycles is more significant 
than that of the other descriptors. The order of significance of 
the other descriptors is LP1 > E1v > RDF125m.

The most significant descriptor used in model is 
information content index (neighborhood symmetry of 
5-order), IC5, describes the connectivity and branching 
in a molecule and can be related to molecular shape and 
symmetry.[40-41] The positive regression coefficients for IC5 
reflect the fact that macrocycles with higher branching and 
symmetry have stronger coordination ability that leads to 
higher association constant. 

LP1 is among the most popular graph invariants and 
known as the Lovasz-pelkin index, also called leading 
eigenvalue.[42] This eigenvalue has been suggested as an index 
of molecular branching, the smallest value corresponding to 
chain graphs and the highest to the most branched graphs. 
The alkyl groups are electron donating, thereby increasing 
the electron density and basicity of the adjacent donor atoms, 
these groups can increase the binding strength of macrocycles. 
Also when the number of alkoxy units increases, the cavity 
becomes smaller and more preorganized and binding constant 
increases for the small ions.[43] 

E1v is 1st component accessibility directional WHIM 
index that weighted by atomic van der Waals volumes, this 
descriptors can be related to the quantity of unfilled space per 
projected atom and has been called density (or emptiness); 
the greater the E1v value, the greater the projected unfilled 
space.[44-46] 

The less relevant descriptor RDf125m, added as the 
last variable in the QSPR model, is probably useful only 
to improve model quality in order to adapt some particular 
macrocycles.[47-48]

Conclusions

A quantitative structure-property relationship model 
was derived to study the association constants of 53 sodium- 
macrocycle compounds at standard temperature (25°C) and 
just in CDCl3 saturated with D2O. Training and test data 
splitting was done with self-organizing map. The selection 
of the best variables from among the available descriptors 
was performed by forward stepwise regression, and resulted 
in the combination of E1v, IC5, LP1, and RDF125m Dragon 
descriptors. The predictive ability of this combination 
of variables was with high Q2

ext (0.92) and low RMSEP 
(0.45), which highlights the importance of these variables 
in modeling the studied property. The results from the 
current work provide a further tool for investigation of the 
complexation phenomenon.
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Table 1. The chemical structures of 53 macrocycles.

No. Structure No. Structure

	

1	 R=C2H5, X=H
2	 R,X=CH3

	
3	 A=COCH3, R1,R2=CH3

4	 A=COCH3, R1=C(O)CH3,R2=CH3

5	 A=COCH3, R1=Br,R2=CH3

6	 A=COCH3, R1=NO2,R2=CH3

7	 A=CCO2CH3, R1, R2=CH3

8	 A=CNO2, R1, R2=CH3

9	 A=CNH2, R1, R2=CH3

10	 A=CSCH3, R1=CH3,  R2=t-C4H9

11	 A=CSOCH3, R1=CH3,R2=t-C4H9

12	

	
13	 X=H
14	 X=CH2OCH3

15	

16	
	 R=CH3

17	
	 R=CH3

18	
	 R=CH3

19	
	 R=CH3

20	
	 R=CH3

21	
	 R1=CH3, R2=CH2C6H5
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22	 R1,R3=CH3; R2=H
23	 R1=CH2=CHCH2; R2=CH3; R3=CH2C6H5

	
24	 X,Y=H
25	 X=OCH3; Y=CH3

	
	
26	 X=Br;Y=H
27	 X=3,5-(tC4H9)2-4-CH3-C6H2;Y=H
28	 X=H; Y= tC4H9

29	 X=Br; Y= tC4H9

30	 X=3,5-(tC4H9)2-4-CH3-C6H2; Y= tC4H9

31	 X=3-HOC6H4;Y=H

32	

	
33	 R=CH3

	 R=CH2OCH3

34

	
35	 R=CH3; X=CH2SO2CH2

	
36	 R=CH3

37	 R=C2H5

	
38	 R=CH3

	
39	 R=C2H5

	
40	 R=CH3; X=SO
41	 R=CH3; X=SO2

42	

Table 1. Continued.

No. Structure No. Structure
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43	  

44	

45	
	 R=CH3

46	
	 R=CH3

47	 R=CH3; X=CH2OCH2; Y=CH2CHxOCH2CH2

48	 R=C3H7; X=CH2OCH2; Y=CH2CH2OCH2CH2

49	 R=C3H7; X=2,6-C5H3N; CH2OCH2;  
Y=CH2CH2OCH2CH2

50	 R=C3H7; X=CH2OCH2; Y=CH2-[2,6-C5H3N]-CH2

	
51	 R1=OCH3;R2=CH3

52	 R1=3,5-(CH3)2C6H3; R2=H

	 Bridged calix-4

53	
	 X=CH2CH2(OCH2CH2)4

Table 1. Continued.

No. Structure No. Structure

                                                                                                                   Cryptahemispherands

Table 2. The MLR model results.

Variable Descriptor  type Definition b Sb bs VIF

Intercept – – -143.2780 13.4651 – –

E1v WHIM 
descriptor

1st component accessibility directional 
WHIM index/weighted by atomic van 

der Wals volumes
-20.5893 1.9155 -0.4344 1.25

IC5 topological 
descriptor

Information content index 
(neighborhood symmetry of 5-order) 3.0883 0.1901 0.5930 1.02

LP1 topological 
descriptor

Lovasz-Pelikan index (Leading 
eigenvalue) 57.6530 5.2036 0.4539 1.28

RDF125m RDF descriptors Radial Distribution function-12.5/ 
weigthed by atomic masses -0.2370 0.0378 -0.2354 1.08
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Table 3. Linear correlation-coefficient matrix for the four descriptors and logK in the MLR model.

E1v IC5 LP1 RDF125m logK
E1v 1.00
IC5 -0.13 1.00
LP1 -0.43 0.05 1.00

RDF125m -0.17 0.07 0.26 1.00
logK -0.66 0.66 0.61 0.00 1.00

Table 4. Molecular descriptors, experimental and predicted logK of macrocycle chelates for Na+ in CDCl3 saturated with D2O at 25°C; test 
set are indicated in bold.

No. E1v IC5 LP1 RDF125m Experimental Predicted Residual
1 0.365 4.833 2.509 0.112 9.20 8.76  0.44
2 0.425 4.715 2.506 0.334 7.00 6.93  0.07
3 0.370 4.945 2.512 0.030 8.79 9.19 -0.40
4 0.372 4.739 2.518 0.072 8.96 8.85 0.11
5 0.369 4.601 2.510 0.032 9.04 8.04 1.00
6 0.391 4.656 2.518 0.030 9.04 8.21 0.83
7 0.401 4.851 2.525 0.030 9.04 9.01 0.03
8 0.403 4.733 2.503 0.000 8.04 7.35 0.69
9 0.405 4.733 2.503 0.000 6.81 7.31 -0.50

10 0.387 4.578 2.538 1.769 7.91 8.80 -0.89
11 0.392 4.615 2.541 2.875 8.34 8.72 -0.38
12 0.384 5.343 2.490 0.002 8.79 8.87 -0.08
13 0.508 4.614 2.503 0.000 5.15 4.82 0.33
14 0.492 4.805 2.504 0.098 5.45 5.77 -0.32
15 0.453 5.099 2.468 0.365 5.72 5.34 0.38
16 0.421 4.430 2.519 0.161 7.40 6.92 0.48
17 0.483 4.767 2.503 0.104 5.04 5.78 -0.74
18 0.423 4.953 2.506 0.007 7.18 7.79 -0.61
19 0.443 5.121 2.531 1.337 9.80 9.02 0.78
20 0.453 4.959 2.484 0.000 6.08 5.92 0.16
21 0.443 5.736 2.528 0.365 11.64 10.98 0.66
22 0.397 5.433 2.516 0.110 10.62 10.36 0.26
23 0.402 5.758 2.538 1.752 12.08 12.14 -0.06
24 0.463 5.205 2.464 0.080 5.36 5.30 0.06
25 0.440 5.306 2.473 0.264 6.38 6.56 -0.18
26 0.392 5.242 2.522 0.281 9.99 10.17 -0.18
27 0.366 5.311 2.535 5.530 9.38 10.43 -1.05
28 0.373 5.242 2.522 4.642 10.04 9.53 0.51
29 0.374 5.242 2.524 0.943 10.70 10.50 0.20
30 0.385 5.346 2.545 4.58 11.04 10.95 0.09
31 0.367 5.546 2.525 3.009 11.08 11.15 -0.07
32 0.480 5.210 2.509 0.381 7.34 7.49 -0.15
33 0.435 5.360 2.51 8.252 7.23 7.07 0.16
34 0.439 5.395 2.512 7.161 7.88 7.47 0.41
35 0.449 4.302 2.524 0.126 6.38 6.25 0.13
36 0.451 4.243 2.521 0.021 5.86 5.88 -0.02
37 0.523 4.824 2.507 0.007 5.15 5.39 -0.24
38 0.463 4.797 2.503 0.193 5.91 6.26 -0.35
39 0.522 4.915 2.507 0.022 5.20 5.68 -0.48
40 0.488 4.708 2.503 0.17 5.82 5.48 0.34
41 0.470 4.721 2.503 0.067 6.20 5.91 0.29
42 0.477 4.673 2.51 0.084 5.45 6.02 -0.57
43 0.435 5.336 2.512 2.877 7.48 8.39 -0.91
44 0.476 5.045 2.463 0.02 4.32 4.50 -0.18
45 0.457 4.089 2.522 1.58 5.38 4.97 0.41
46 0.399 4.362 2.516 7.784 5.28 5.19 0.09
47 0.367 4.929 2.513 0.012 9.38 9.27 0.11
48 0.359 5.086 2.515 0.006 9.15 10.03 -0.88
49 0.411 5.315 2.516 0.09 9.52 9.71 -0.19
50 0.340 5.315 2.518 0.091 10.69 11.28 -0.59
51 0.439 5.428 2.516 0.147 9.30 9.47 -0.17
52 0.429 5.521 2.518 0.304 10.04 10.04 0.00
53 0.386 4.043 2.512 4.096 4.62 5.11 -0.49
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